ASSESSING A COUNTRY'S SECTOR-SPECIFIC LOGISTICS PERFORMANCE: THE CASE OF INDIA'S MARINE-PRODUCT SECTOR
DOI:
https://doi.org/10.46754/jml.2022.12.004Keywords:
Logistics performance index, sector-specific logistics performance index, battery of scales, elasticity, marine sectorAbstract
Country-wise Logistics Performance Index (LPI) is insufficient to guide changing policies for different sectors with varied logistics requirements and perspectives. Each perspective has various measures, and hence a battery of scales is mandated to measure the performance for an individual sector like marine, agriculture, and similar. For the marine-product sector of India, scores are transformed and combined to follow normal distributions enabling parametric analysis. A method of sector-specific logistics performance index (LPI-S) is proposed addressing multi-dimensional, multi-scale response categories satisfying the desired properties of an index. An empirical illustration is given to assess LPI-S for the marine-product sector in India, combining responses of 141 Indian marine exporters in a battery with nine dimensions. The proposed method generates continuous, monotonic data, and distributions of dimension/battery scores are normal. The LPI-S scores have better arithmetic aggregation admissibility, even if lengths of dimensions are different. In addition, it identifies critical dimensions, detects changes by longitudinal data, and dimension-wise elasticity reflecting the sensitivity of the dimension from snap-shot data. Irrespective of dimensions and types of data, the proposed methodology uses the sensitivity of a dimension on LPI-S to help policy makings separately for individual categories to improve logistics efficiency. The study identified eight crucial dimensions associated with marine product logistics. The sensitivity of these dimensions in the descending order of importance were - Information system, Regulatory process, Safety & Security issues, Timeliness and Completeness efficiency, Sustainability in logistics, Operating conditions, Logistics facility pricing, Quality of Logistic services, Transportation Networks and Logistics infrastructure. Such ordering of dimensions help in deciding policy priorities.
References
Arvis, J. F., Saslavsky, D., Ojala, L., Shepherd, B., Busch, C., Raj, A., & Naula, T. (2016). Connecting to compete: Trade logistics in the global economy. Washington DC: World Bank DOI: https://doi.org/10.1596/24598
Bastien, C. H., Vallieres, A., & Morin, C. M. (2001). Validation of the insomnia severity index as an outcome measure for insomnia research. Sleep Medicine, 2(4), 297–307. DOI: https://doi.org/10.1016/S1389-9457(00)00065-4
Beysenbaev, R. (2018). The importance of country-level logistics efficiency assessment to the development of international trade. British Journal for Social and Economic Research, 3(6), 13–20. DOI: https://doi.org/10.22406/bjser-18-3.6-13-20
Bound, J., Brown, Ch., & Mathiowetz, N. (2000). Measurement Error in Survey Data (Report No. 00-450). Population Studies Center at the Institute for Social Research University of Michigan
Bradburn, N. M., Sudman, S., & Wansink, B. (2004). Asking questions: The definitive guide to questionnaire design—for market research, political polls, and social and health questionnaires. San Francisco: Jossey-Bass
Chakrabartty, S. N. (2020a). Logistics Performance Index: Methodological Issues. Foreign Trade Review, 55(4), 466-477. https://doi.org/10.1177/0015732520947860 DOI: https://doi.org/10.1177/0015732520947860
Chakrabartty, S. N. (2020b). Reliability of Test Battery. Methodological Innovation. 13(2), 1-8. DOI: https://doi.org/10.1177/2059799120918340
Chakrabartty, S. N. (2021). Optimum number of response categories. Current Psychology. https://doi.org/10.1007/s12144-021-01866-6 DOI: https://doi.org/10.1007/s12144-021-01866-6
Chakrabartty, S. N. (2022). Understanding national level logistics costs: Methodological approach. Journal of Asian Economic Integration, 195-207. https://doi.org/10.1177/26316846221107419 DOI: https://doi.org/10.1177/26316846221107419
Christopher, M. (2016). Logistics & supply chain management. UK: Pearson
Coto-Millán, P., Agüeros, M., Casares-Hontañón. P., & Pesquera, M. Á. (2013) Impact of logistics performance on world economic growth (2007–2012). World Review of Intermodal Transportation Research, 4(4), 300-310. DOI: https://doi.org/10.1504/WRITR.2013.059857
Dawes, J. G. (2002). Five-point vs eleven-point scales: Does it make a difference to data characteristics? Australasian Journal of Market Research, 10(1), 39–47.
Devlin, J., & Yee, P. (2005). Trade logistics in developing countries: The case of the Middle East and North Africa. The World Economy, 28, 435–456. DOI: https://doi.org/10.1111/j.1467-9701.2005.00620.x
Dua, A., & Sinha, D. (2019). Quality of multimodal freight transportation: A systematic literature review. World Review of Intermodal Transportation Research, 8(2), 167-194. DOI: https://doi.org/10.1504/WRITR.2019.10020315
Duˇsko, P., & Boˇzica, R. (2016) The impact of transport on international trade development. Acta Economica Et Turistica, 2(1), 13–28 DOI: https://doi.org/10.1515/aet-2016-0002
Ferrando, P. J. (2003) A kernel density analysis of continuous typical-response scales. Educational and Psychological Measurement, 63, 809-824 DOI: https://doi.org/10.1177/0013164403251323
Flora, D. B., & Curran , P. J. (2004) An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data, Psychological Methods, 9(4), 466– 491. https://doi.org/10.1037/1082-989X.9.4.466 DOI: https://doi.org/10.1037/1082-989X.9.4.466
Gani, A. (2017) The logistics performance effect in international trade. The Asian Journal of Shipping and Logistics, 33(4), 279–288. DOI: https://doi.org/10.1016/j.ajsl.2017.12.012
Göçer, A., Özpeynirci, Ö., & Semiz, M. (2021) Logistics performance index-driven policy development: An application to Turkey. Transport Policy. DOI: https://doi.org/10.1016/j.tranpol.2021.03.007
Gu, Peter & Wen, Q. & Wu, D. (1995) How often is often? Reference ambiguities of the Likert-scale in language learning strategy research. Occasional Papers in English Language Teaching, 5, 19-35.
Hand, D. J. (1996) Statistics and the theory of measurement, Journal of the Royal Statistical Society Series A, 159(3), 445-492. https://doi.org/10.2307/2983326 DOI: https://doi.org/10.2307/2983326
Harwell, M. R. & Gatti, G, G. (2001) Rescaling ordinal data to interval data in educational research. Review of Educational Research, 71(1), 105–131. https://doi.org/10.3102/00346543071001105 DOI: https://doi.org/10.3102/00346543071001105
Hausman, W., Lee, H. L. & Subramanian, U. (2005) Global logistic indicators, supply chain metrics and bilateral trade patterns. Washington D.C: World Bank Policy Research Working Paper 3773, DOI: https://doi.org/10.1596/1813-9450-3773
Jhawar, A., Garg, S. K., & Khera, S. N. (2017) Improving logistics performance through investments and policy intervention: A causal loop model. International Journal of Productivity and Quality Management, 20(3), 363–391. DOI: https://doi.org/10.1504/IJPQM.2017.10003289
Ji, Y., Yang, H., & Chen, M. (2017) Logistics network configuration for fresh agricultural products. In 2017 29th Chinese Control and Decision Conference (CCDC) (pp. 5724-5727). IEEE. DOI: https://doi.org/10.1109/CCDC.2017.7978187
Johnston, B. T. & Sheehy, T. P., (1995) The Index of Economic Freedom. Washington: Heritage Foundation, pp. ix-21
Lee, J. A. & Soutar, G. N. (2010). Is Schwartz's value survey an interval scale, and does it really matter? Journal of Cross-Cultural Psychology, 41, 76-86 DOI: https://doi.org/10.1177/0022022109348920
Lim, Hock-Eam (2008) The use of different happiness rating scales: Bias and comparison problem? Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, 87, 259–267 DOI: https://doi.org/10.1007/s11205-007-9171-x
Livingston, S. A. (2004) Equating test scores (without IRT). Princeton, NJ: ETS.
Martí, L., Martín, J. C., & Puertas, R. (2017) A DEA-logistics performance index. Journal of applied economics, 20(1), 169-192. DOI: https://doi.org/10.1016/S1514-0326(17)30008-9
Martí, L., Puertas, R., & García, L. (2014) The importance of the Logistics Performance Index in international trade. Applied economics, 46(24), 2982-2992. DOI: https://doi.org/10.1080/00036846.2014.916394
Mellat-Parast, M. & Spillan, J. E. (2014) Logistics and supply chain process integration as a source of competitive advantage, International Journal of Logistics Management, 25(2), 289-314. DOI: https://doi.org/10.1108/IJLM-07-2012-0066
Ministry of Commerce and Industry Government of India. (2019). Logistics Ease Across Different States (LEADS). https://commerce.gov.in/wp-content/uploads/2020/08/MOC_637051086790146385_LEAD_Report-2.pdf
OECD. (2002). An Update of the OECD Composite Leading Indicators. Short-term economic Statistics division, Statistics Directorate/OECD, https://www.oecd.org/sdd/leading-indicators/2410332.pdf
OECD. (2020). OECD Services Trade Restrictiveness Index: Policy trends up to 2020. https://www.oecd.org/trade/topics/services-trade/documents/oecd-stri-policy-trends-up-to-2020.pdf
Pohit S., Gupta. D. B., Pratap. D., Alawadhi. A., Sayal. L., Malik. S. (2019). Analysis of India’s Logistics Costs. National Council of Applied Economic Research (NCAER). https://www.ncaer.org/publication/analysis-of-india039s-logistics-costs, accessed on 10.11.2022.
Preston, Carolyn C., & Colman, A. M. (2000). Optimal number of response categories in rating scales: Reliability, validity, discriminating power, and respondent preferences, Acta Psychologica, 104, 1-15 DOI: https://doi.org/10.1016/S0001-6918(99)00050-5
Ray, A. K. (2008). Measurement of social development: An international comparison. Social Indicators Research, 86(1), 1–46. DOI: https://doi.org/10.1007/s11205-007-9097-3
Rezaei, J., Van R., W. S., & Tavasszy, L. (2018) Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport Policy, 68, 158-169. DOI: https://doi.org/10.1016/j.tranpol.2018.05.007
Rievaj, V., Vrábel, J., Synák, F., & Bartuška, L. (2018). The effects of vehicle load on driving characteristics. Advances in Science and Technology. Research Journal, 12(1), 142-149. https://doi.org/10.12913/22998624/80896 DOI: https://doi.org/10.12913/22998624/80896
Rüschendorf, L. (2013). Mathematical Risk Analysis.Dependence, Risk Bounds, Optimal Allocations and Portfolios. Heidelberg: Springer. MR-3051756 DOI: https://doi.org/10.1007/978-3-642-33590-7_10
Schönsleben, P. (2018). Integral logistics management: Operations and supply chain management within and across companies (4th ed.). Auerbach–Taylor & Francis. DOI: https://doi.org/10.4324/9781315368320
The World Bank. (2018). International LPI. https://lpi.worldbank.org/international/global
Van Der Eijk, C., & Rose, J. (2015) Risky business: Factor analysis of survey data - assessing the probability of incorrect dimensionalisation. PloS one, 10(3), e0118900. https://doi.org/10.1371/journal.pone.0118900 DOI: https://doi.org/10.1371/journal.pone.0118900
Wang, R. (2014). Sum of arbitrarily dependent random variables. Electronic Journal of Probability, 19(84), 1 - 18. DOI: https://doi.org/10.1214/EJP.v19-3373
World Economic Forum. (2016) The global enabling trade report 2016. https://www.weforum.org/reports/the-global-enabling-trade-report-2016/
Wu, C. H. (2007). An empirical study on the transformation of likert scale data to numerical scores, Applied Mathematical Sciences, 1(58), 2851 – 2862.
Zahedian, A. & Saba, R. A. (2016) Measurement Error Estimation Methods in Survey Methodology. Applications and Applied Mathematics. 11(1), 97-114.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 PENERBIT UMT
This work is licensed under a Creative Commons Attribution 4.0 International License.