UNDERSTANDING THE THERMAL COAL MOVEMENTS FROM COLOMBIA TO CHILE THROUGH THE PANAMA CANAL USING LOGIT MODELS- LOOKING AHEAD
DOI:
https://doi.org/10.46754/jml.2022.08.001Keywords:
Panama Canal, Cape Horn, Magellan Strait, Logit Model, Thermal Coal, Panamax PlusAbstract
This study attempted to specify logit models for bulkers transporting mostly thermal coal from the East Coast of Colombia to Chile through the Panama Canal compared to the alternative route. The preliminary proposed predictors for the logit models included voyage cost variables and Canal's attributes. For the route choice of coal from the East Coast of Colombia to Chile, voyage cost factors such as Panama Canal cost, distance difference between Panama versus alternative route, post arrival of vessel to the next port and the maximum transit draft were important factors in this choice, as well as Panama Canal attributes such as vessel arrivals at the Panama Canal and the Panamax Plus requirement to transit the neopanamax locks. The route choice involved the Panama Canal and Cape Horn/Magellan Strait in the Southern tip of South America. This study analyzed coal traffic between October 1, 2016, and September 30, 2020, and briefly discussed the future of coal movements through Panama, given Chile's long term plans to generate electricity using renewanable energy sources and hydrogen. This paper is a contribution to the discrete choice literature and attempted to provide insights into route choice factors involving the Panama Canal, proposing new preliminary explanatory variables to better understand route choices that may apply in future Panama Canal studies. The study will be a contribution to the universal maritime coal transportation literature, and it is a continuation on research related to the Panama canal, particularly on route choices using AIS information.
References
Adland, R., & Jia, H. (2018). Dynamic speed choice in bulk shipping. Maritime Economics & Logistics, 20(2), 253- 266. https://doi.org/10.1057/s41278- 016-0002-3 DOI: https://doi.org/10.1057/s41278-016-0002-3
Bai, X., & Siu J. (2019). A destination choice model for very large gas carriers (VLGC) loading from US gulf. Energy, 174, 1267- 1275. https://doi. org/10.1016/j.energy.2019.02.148 DOI: https://doi.org/10.1016/j.energy.2019.02.148
Berndt, E., & Wood, D. (1975). Technology, prices and the derived demand for energy. The Review of Economics and Statistics, 57(3), 259- 268. https://doi. org/10.2307/1923910 DOI: https://doi.org/10.2307/1923910
Brantes, R., & Cantallopts, J. (2020). In¬forme de actualización del consumo energético de la minería del cobre al año 2019. Comisión Chilena del Co¬bre (Cochilco). Registro Propiedad Intelectual © N° 2020-A-9342. DEPP 16/2020. October 2020. https://www. cochilco.cl/Mercadoper cent20deper cent20Metales/Informeper cent20de¬per cent20Consumoper cent20deper cent20Energper centC3per centADa¬percent202019.pdf
Breen, B.,Vega, A., & Feo-Valero, M. (2015). An empirical analysis of mode and route choice for International Freight Transport in Ireland. Working Paper 262587, Galway: National University of Ireland, Socio-Economic Marine Research Unit. DOI: 0.22004/ ag.econ.262587
Chang, M., & Lu, P. (2013). A Multinomial Logit Model of mode and arrival time choices for planned special events. Journal of the Eastern Asia Society for Transportation Studies, 10, 710-727. https://doi.org/10.11175/ easts.10.710
Coordinador Eléctrico Nacional of Chile (n.d.), Reports, statistics and frequently used platforms. Accessed on April 21, 2021, from https://www.coordinador.cl/ reportes-y-estadisticas/#Estadisticas.
Fan, L., Wilson, W., & Dahl, B. (2012). Impacts of new routes and ports on spatial competition for containerized imports into the United States. Maritime Policy & Management, 39(5), 1-23. https://doi.org/10.1080/03088839.201 2.705027 DOI: https://doi.org/10.1080/03088839.2012.705027
Fiorini, M., Capata, A., & Bloisi, D. (2016). AIS Data Visualization for Maritime Spatial Planning (MSP). International Journal of e-Navigation and Maritime Economy, 5, 45-60. https://doi. org/10.1016/j.enavi.2016.12.004 DOI: https://doi.org/10.1016/j.enavi.2016.12.004
Guoqiang, S., & Jiahui, W. (2012). A Freight Mode Choice Analysis using a Binary Logit Model and GIS: The case of cereal grains transportation in the United States. Journal of Transportation Technologies, 2, 175-188. http://dx.doi. org/10.4236/jtts.2012.22019 DOI: https://doi.org/10.4236/jtts.2012.22019
Ho, J. & Bernal, P. (2018b). Elastic or not elastic? Attempting to estimate an aggregate demand function for the dry bulkers at the Panama Canal. Presented at the International Association of Maritime Economist Conference (IAME) in Mombasa, Kenya. September 2018.
Ho, J. & Bernal, P. (2019). Panama Canal vs alternative routes: Estimating a logit model for grains. Maritime Business Review, 5(1), 99-120. http://dx.doi. org/10.1108/mabr-07-2019-0025 DOI: https://doi.org/10.1108/MABR-07-2019-0025
Hussain, D., Mohammed, A., Salman, A., Rahmat, R., & Borhan, M. (2017). Analysis of transportation mode choice using a comparison of artificial neural network and multinomial logit model. ARPN Journal of Engineering and Applied Sciences, 12(5), 1483-1493.
Itoh, H., Tiwari, P., & Doh, M. (2002). An Analysis of cargo transportation behavior in Kita Kanto (Japan). International Journal of Transport Economics, 29(3), 319- 335. http:// worldcat.org/issn/03918440
Kanamoto, K., Murong, L., Nakashima, N., & Shibasaki, R. (2021). Can maritime big data be applied to shipping industry analysis? Focussing on commodities and vessel sizes of dry bulk carrier. Maritime Economics & Logistics, 23, 211- 236. https://doi.org/10.1057/ s41278-020-00171-6 DOI: https://doi.org/10.1057/s41278-020-00171-6
Lee, E., Mokashi, A., Moon, S., & Kim, G. (2019). The maturity of Automatic Identification Systems (AIS) and its implications for innovation. Journal of Marine Science and Engineering, 7(9), 287. https://doi.org/10.3390/ jmse7090287 DOI: https://doi.org/10.3390/jmse7090287
Manssour, A., Alhodairi, A. M., & Rahmat, R. (2013). Modeling a Multinomial Logit Model of intercity travel mode choice behavior for all trips in Lybia. International Journal of Civil and Environmental Engineering, 7(9), 636- 645. doi.org/10.5281/zenodo.1087592
Manssour, A., Alhodairi, A. M., & Rahmat, R. (2013). Modeling of intercity transport mode choice behavior in Lybia: A binary logit model for business trips by private car and intercity bus. Australian Journal of Basic and Applied Sciences, 7(1), 302-311.
Mao, S., Tu, E., Zhang, G., Rachmawati, L., Rajabally & E., Huang, G. (2018). An Automatic Identification System (AIS) Database for Maritime Trajectory Prediction and Data Mining. In: Cao J., Cambria E., Lendasse A., Miche Y., Vong C. (Eds.), Proceedings of ELM-2016. Proceedings in Adaptation, Learning and Optimization, 9. Cham: Springer, https://doi.org/10.1007/978- 3-319-57421-9_2
Martinez, C., Adams, S., & Dresner, M. (2016). East Coast vs. West Coast: The impact of the Panama Canal’s expansion on the routing of Asian imports into the United States. Transportation Research Part E: Logistic and Transportation Review, 91(C), 274-289. https://doi. org/10.1016/j.tre.2016.04.012 DOI: https://doi.org/10.1016/j.tre.2016.04.012
Mason, C., & Rowlands, A. (1938). Panama Canal traffic. Economic Geography, 14(4), 325-337. https://doi. org/10.2307/141526 DOI: https://doi.org/10.2307/141526
Nathan Associates (2012). Update and development of the dry bulk market segment study. Arlington, Virginia. Nathan Associates. Study for the Panama Canal Authority.
Pham, T., Kim, K., & Yeo, G. (2018). The Panama Canal expansion and its impact on East–West liner shipping route selection. Sustainability, 10(12), 4353. https://doi.org/10.3390/su10124353 DOI: https://doi.org/10.3390/su10124353
Regianni, A., Nijkamp, P., & Tsang, W.F. (1997). European Freight Transport Analysis using Neural Networks and Logit Models (No. 97-032/3). Tinbergen Institute discussion paper, 5-9.
Schøyen, H., & Bråthen, S. (2011). The Northern Sea Route versus the Suez Canal: Cases from bulk shipping. Journal of Transport Geography, 19(4), 977-983. https://doi.org/10.1016/j. jtrangeo.2011.03.003 DOI: https://doi.org/10.1016/j.jtrangeo.2011.03.003
Serry, A. (2017). The Automatic Identification System (AIS): A data source for studying maritime traffic: The case of the Adriatic Sea. Book of Proceedings, 7th International Maritime Science Conference (IMSC), Solin, Croatia, April 20-21, 2017.
Shibasaki, R., Azuma, T., & Yoshida, T. (2016). Route choice of containership on a global scale and model development: Focusing on the Suez Canal. International Journal of Transport Economics, 43(3), 263- 288. http://worldcat.org/issn/03918440
Shibasaki, R., Azuma, T., Yoshida, T., Teranishi, H., & Abe, M. (2017). Global route choice and its modelling of dry bulks carriers based on vessel movement database: Focusing on the Suez Canal. Research in Transportation Business & Management, 25, 51-65. https://doi. org/10.1016/j.rtbm.2017.08.003 DOI: https://doi.org/10.1016/j.rtbm.2017.08.003
Shibasaki, R., Kanamoto, K., & Suzuki, T. (2019). Estimating global pattern of LNG supply chain: A port-based approach by vessel movement database. Maritime Policy & Management, 47(3), 1-29. DO I:10.1080/03088839.2019.1657974 DOI: https://doi.org/10.1080/03088839.2019.1657974
Surbakti, M., & Bombongan, C. (2017). Characteristics of modal choice preference between bus and train from Medan to Kuala Namu Airport. IOP Conference Series: Material Science and Engineering, 180(1), 012143. DOI:10.1088/1757- 899X/180/1/012143 DOI: https://doi.org/10.1088/1757-899X/180/1/012143
Svanberg, M., Santén, V., Hörteborn, A., & Holm, H. (2019). AIS in maritime research. Marine Policy, 106, 103520. https://doi.org/10.1016/j. marpol.2019.103520. DOI: https://doi.org/10.1016/j.marpol.2019.103520
Sytsmas, T., & Wilson, W. (2021). Estimating the Demand for Railroad and Barge Movements of Corn in the Upper Mississippi River Valley. Research in Agricultural & Applied Economics. Cooperative Agreement Number Agreement 18-TMTSD-TN-0012, with the Agricultural Marketing Service (AMS) of the U.S. Department of Agriculture (USDA). https://doi. o r g / 1 0 . 2 2 0 0 4 / a g . e c o n . 3 0 8 9 3 8 . https://ageconsearch.umn.edu/ record/308938.
Tixerant, M., Guyader, D., Gourmelon, F., & Queffelec, B. (2018). How can Automatic Identification System (AIS) data be used for Maritime Spatial Planning? Ocean & Coastal Management, 166, 18-30. DOI:10.1016/j. ocecoaman.2018.05.005 DOI: https://doi.org/10.1016/j.ocecoaman.2018.05.005
Tu, E., Zhang, G., Rachmawati, L., Rajabally, & E., Huang, G.B. (2017). Exploiting AIS data for intelligent marine navigation: a comprehensive survey from data to methodology. IEEE Transactions on Intelligent Transportation Systems, 99, 1-24. 10.1109/TITS.2017.2724551
Ungo, R., & Sabonge, R. (2012). A competitive analysis of Panama Canal routes. Maritime Policy & Management, 39(6), 555- 570. https://doi.org/10.108 0/03088839.2012.728727 DOI: https://doi.org/10.1080/03088839.2012.728727
Tewalt, S., Finkelman, R., Torres, I., & Simoni, F. (2006). World Coal Quality Inventory: Colombia. United States Geological Service (USGS). Chapter 5. Open File Report 2006-1241. https://pubs.usgs.gov/of/2006/1241/ Chapterper cent205-Colombia.pdf
Wen, C., & Huang, J. (2007). A Discrete Choice Model of ocean carrier choice. Journal of the Eastern Asia Society for Transportation Studies, 7, 795- 807. https://doi.org/10.11175/ easts.7.795
Wilson, W., & Ho, J. (2018). Panama Canal. In Blonigen, B., & Wilson, W. (Eds.), Handbook of International Trade and Transportation (pp. 628-657). U.K.: Edward Elgar Publishing. 628-657. https://doi. org/10.4337/9781785366154.00032 DOI: https://doi.org/10.4337/9781785366154.00032
Wojcik, S. (2017). The determinants of Travel Mode Choice: The case of Lodz. Bulletin of Geography. Socio-economics Series, 44(44), 93-101. doi:10.2478/bog-2019-0018 DOI: https://doi.org/10.2478/bog-2019-0018
World Coal. Accessed on March 3, 2022, from https://www.worldcoal.com/ coal/10022011/coal_in_colombia/
Wright, D., Janzen, C., Bochenek, R., Austin, J., & Page, E. (2019). Marine observing applications using AIS: Automatic Identification System. Frontier in Marine Science, 6, 1-7. https://doi. org/10.3389/fmars.2019.00537 DOI: https://doi.org/10.3389/fmars.2019.00537
Wu, L., Xu, Y., Wang, Q., Wang, F., & Xu, Z. (2017). Mapping Global Shipping Density from AIS Data. The Journal of Navigation, 70(1), 67-81. DOI: https:// doi.org/10.1017/S0373463316000345 DOI: https://doi.org/10.1017/S0373463316000345
Wu, J., & Xu, D. (2021). Research on alternative passage of Suez Canal. E3S Web of Conferences, 283, 01017. Presented in the 2021 3rd International Conference on Civil, Architecture and Urban Engineering (ICCAUE 2021). DOI: https://doi.org/10.1051/e3sconf/202128301017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 PENERBIT UMT
This work is licensed under a Creative Commons Attribution 4.0 International License.