Screening of Rhamnolipid Produced by Marine Bacterium for Heavy Metal Removal in Mangrove Soil

Authors

  • Raveena, K. Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Arularasu, M. Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Ganesan, S.S. K. Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Amelia, T.S.M. Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Ong, M.C. Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Bhubalan, K. Institute Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

DOI:

https://doi.org/10.46754/umtjur.v1i4.89

Keywords:

biosurfactant, rhamnolipid, heavy metal, remediation, Pseudomonas aeruginosa

Abstract

Mangrove located near urban area is exposed to various industrial discharge including heavy metals. Mangrove soil is capable of accumulating and storing these heavy metals. Heavy metals are toxic and non-biodegradable, so their accumulations affect water quality, while bioaccumulation and bio-assimilation of heavy metals in mangrove organisms negatively impact the food chain. Bacteria-derived biosurfactants are compounds capable of removing heavy metals from soil and sediment. Furthermore, environmentally friendly properties, such as biodegradability and low toxicity, exhibited by biosurfactants make them a suitable replacement for chemical surfactants for remediation efforts. This study was conducted to investigate the lead- (Pb) and zinc- (Zn) removing capability of rhamnolipid (RL), a type of biosurfactant produced by marine bacterium, Pseudomonas aeruginosa UMTKB-5. Rhamnolipid solutions of three different concentrations (25 mg/L, 50 mg/L and 75 mg/L) were added to mangrove soil and incubated for 7 days. The removal of Pb from soils was up to 18.3% using 25 mg/L RL solution, while 50 mg/L RL solution removed 48.3%, and 75 mg/L RL solution removed 75.9% Pb over time. Meanwhile, zinc removal of 25 mg/L RL solution was up to 24.9%, while 50 mg/L removed 16.5%, and 75 mg/L RL removed 30.5% of Zn. The results showed that RL from P. aeruginosa UMTKB-5 could be a potential biomaterial to use to remediate heavy metals in sediment.

References

Abdel-Mawgoud, A. M., Hausmann, R., Lépine, F., Müller, M. M., & Déziel, E. (2011). Rhamnolipids: Detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In Soberón‐Chávez, G. (Ed.), Biosurfactants (pp. 13-55). Berlin, Heidelberg: Springer. http://doi.org/10.1007/978-3-642-14490-5_2

Azemi, M. A. F. M., Rashid, N. F. M., Saidin, J., Effendy, A. W. M., & Bhubalan, K. (2016). Application of Sweetwater as Potential Carbon Source for RL Production by Marine Pseudomonas aeruginosa UMTKB-5. International Journal of Bioscience, Biochemistry and Bioinformatics, 6(2), 50.

Azrina, M. Z., Yap, C. K., Ismail, A. R., Ismail, A., & Tan, S. G. (2006). Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotoxicology and environmental safety, 64(3), 337-347.

Ballot, F. (2009). Bacterial production of antimicrobial biosurfactants (Doctoral dissertation, Stellenbosch: University of Stellenbosch).

Christova, N., Tuleva, B., Kril, A., Georgieva, M., Konstantinov, S., Terziyski, I., ... & Stoineva, I. (2013). Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Applied Biochemistry and Biotechnology, 170(3), 676-689.

da Rocha Junior, R. B., Meira, H. M., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2018). Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation, 1-19.

Dahrazma, B., & Mulligan, C. N. (2007). Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere, 69(5), 705-711.

Defew, L. H., Mair, J. M., & Guzman, H. M. (2005). An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Marine Pollution Bulletin, 50(5), 547-552.

Déziel, E., Lépine, F., Milot, S., & Villemur, R. (2000). Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1485(2), 145-152.

Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156, 609-643.

Juwarkar, A. A., Nair, A., Dubey, K. V., Singh, S. K., & Devotta, S. (2007). Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 68(10), 1996-2002.

Kurtzman, C. P., Price, N. P., Ray, K. J., & Kuo, T. M. (2010). Production of sophorolipid biosurfactants by multiple strains of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiology Letters, 311(2), 140-146. http://doi.org/10.1111/j.1574-6968.2010. 02082.x

Lee, K. M., Hwang, S. H., Ha, S. D., Jang, J. H., Lim, D. J., & Kong, J.Y (2004). Rhamnolipid production in batch and fed-batch fermentation using Pseudomonas aeruginosa BYK-2 KCTC 18012P. Biotechnology and Bioprocess Engineering, 9(4), 267-273.

Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. Applied Microbiology and Biotechnology Express, 1, 5. http://doi.org/10.1186/2191-0855-1-5

Marchant, R., & Banat, I. M. (2012). Microbial biosurfactants: Challenges and opportunities for future exploitation. Trends in biotechnology, 30(11), 558-565.

Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Heavy metal removal from sediments by biosurfactants. Journal of Hazardous Materials, 85(1), 111-125.

Mulligan, C. N., & Gibbs, B. F. (2004). Types, production and applications of biosurfactants. Proceedings-Indian National Science Academy Part B, 70(1), 31-56.

Neilson, J. W., Artiola, J. F., & Maier, R. M. (2003). Characterization of lead removal from contaminated soils by nontoxic soil-washing agents. Journal of Environmental Quality, 32(3), 899-908.

Ochoa-Loza, F. J., Artiola, J. F., & Maier, R. M. (2001). Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. Journal of Environmental Quality, 30(2), 479-485.

Rahman, K. S. M., Rahman, T. J., Kourkoutas, Y., Petsas, I., Marchant, R., & Banat, I. M. (2003). Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 90(2), 159-168.

Rashid, N., Azemi, M., Amirul, A., Wahid, M., & Bhubalan, K. (2015). Simultaneous

production of biopolymer and biosurfactant by genetically modified

Pseudomonas aeruginosa UMTKB-5. International Proceedings of Chemical,

Biological And Environmental Engineering, 90(3), 16-21.

Rufino, R. D., Luna, J. M., Campos-Takaki, G. M., Ferreira, S. R. M., & Sarubbo, L. A. (2012). Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals. Chemical Engineering Transactions, 27, 61-66.

Sandrin, T. R., Chech, A. M., & Maier, R. M. (2000). A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Applied and Environmental Microbiology, 66(10), 4585-4588.

Shoham, Y., Rosenberg, M., & Rosenberg, E. (1983). Bacterial degradation of emulsan. Applied and Environmental Microbiology, 46(3), 573-579.

Singh, P., & Cameotra, S. S. (2004). Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and biophysical research communications, 319(2), 291-297.

Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25, 99-121.

Sriram, M. I., Gayathiri, S., Gnanaselvi, U., Jenifer, P. S., Mohan Raj, S., & Gurunathan, S. (2011). Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresource Technology, 102, 9291-9295.

Wang, S., & Mulligan, C. N. (2009). Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Process Biochemistry, 44(3), 296-301.

Wei, Y. H., Cheng, C. L., Chien, C. C., & Wan, H. M. (2008). Enhanced di-rhamnolipid production with an indigenous isolate Pseudomonas aeruginosa J16. Process Biochemistry, 43(7), 769-774.

Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 402647.

Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., ... & He, B. (2009). Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry, 44(3), 302-308.

Yunus, K., Mohd Yusuf, N., Shazili, M., Azhar, N., Ong, M. C., Saad, S., & Bidai, J. (2011). Heavy metal concentration in the surface sediment of Tanjung Lumpur mangrove forest, Kuantan, Pahang, Malaysia. Sains Malaysiana, 40(2), 89-92.

Additional Files

Published

2019-10-31

How to Cite

Raveena, K., Arularasu, M., Ganesan, S.S. K., Amelia, T.S.M., Ong, M.C., & Bhubalan, K. (2019). Screening of Rhamnolipid Produced by Marine Bacterium for Heavy Metal Removal in Mangrove Soil. Universiti Malaysia Terengganu Journal of Undergraduate Research, 1(4), 29–36. https://doi.org/10.46754/umtjur.v1i4.89