AMMONIUM-INDUCED CHANGES IN THE ASCORBIC ACID, CAROTENOID, PHENOLIC AND FLAVONOID CONTENT IN THE CULTURES OF Aglaonema simplex

Ammonium effects on Aglaonema simplex

Authors

  • Mohd-Ridwan Abdullah-Asri
  • Amirrudin Ahmad
  • Muhamad-Firus Noor-Hassim
  • Aziz Ahmad Universiti Malaysia Terengganu

DOI:

https://doi.org/10.46754/umtjur.v5i3.406

Keywords:

ascorbic acid, carotenoid,, phenolic, chlorophyll,, α-tocopherol,, flavonoid,

Abstract

Malayan Sword or Borneo Sword (Aglaonema simplex) is a semi-aquatic plant that inhabits the swamp forest or adjacent to a river. The plant species belong to the Araceae family and are native to Southeast Asia. Ammonium is one source of nitrogen for plants. In higher concentrations, ammonium is toxic to plants. The present study examines the effects of ammonium concentrations (0 mM to 45.0 mM) on biomass, α-tocopherol, ascorbic acid, chlorophyll, carotenoid, phenolic, flavonoid, and flavones levels in an aquatic plant culture, Aglaonema simplex. Results showed that ammonium concentrations induced changes in the biomass and biochemicals of the plant. Ammonium at 36.0 mM produced the highest biomass at 1.5-fold dry weight, ascorbic acid at 1.2-fold and total phenolic produced 1.3-fold dry weight in biomass after 28 days of treatment. Carotenoid, chlorophyll, and flavonoid content varied among the ammonium concentrations and depend on the culture period. Ammonium concentrations did not significantly influence (p > 0.05) the α-tocopherol content in the treated plants. The finding suggested that ascorbic acid and phenolic might act as shields to diminish the effects of ammonium toxicity and can be induced by an appropriate ammonium concentration applied into the culture medium.

References

Akram, N. A., Shafig, F., & Ashraf, M. (2017). Ascorbic acid – A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Frontiers in Plant Science, 8, 613.

Ali, E., Hussain, S., Hussain, N., Kakar, K. U., Shah, J. M., Zaidi, S. H. R., Jan, M., & Zhang, K. (2022). Tocopherol as plant protectors: An overview of tocopherol biosynthesis enzymes and their role as antioxidant and signalling molecules. Acta Physiologiae Plantarum, 44(20), 1-11. https://doi.org/10.1007/s11738-021- 03350-x.

Chang, E. F., Yang, M. H., Wen, H., M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colourimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182.

Cheng, W., Xian, F., Zhou, Z, Hu, K., & Gao, J. (2023). Solubility and stability of carotenoids in ammonium- and phosphonium-based ionic liquids: Effect of solvent nature, temperature and water. Molecules, 28, 3618. https://doi. org/10.3390/molecules28083618.

Fang, G., Yang, J., Sun, T., Wang, X., & Li, Y. (2021). Evidence that synergism between potassium and nitrate enhances the alleviation of ammonium toxicity in rice seedling roots. PLOS ONE, 16(9), e0248796. https://doi.org/10.1371/journal. pone.0248796.

Foyer, C.H., Kyndt, T., & Hancock, R. D. (2020). Vitamin C in plants: Novel concepts, new perspectives and outstanding issues. Antioxidant & Redox Signal, 32, 463-485.

Gamborg, O. L., Miller, R. A., & Kojima, K. (1968). Nutrient requirement of suspension cultures of soybean root cells. Experimental Cell Research, 50, 151- 158.

Hachiya, T., Inaba, J., Wakazaki, M., Sato, M., Toyooka, K., Miyagi, A., Kawai- Yamada, M., Sugiura, D, Nagakawa, T, Kiba, T., Gojon, A., & Sakakibara, H. (2021). Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nature Communications, 12, 4944. https:// doi.org/10.1038/s41467-021-25238-7.

Harborne, J. B. (1984). Phytochemical methods (2nd ed., pp. 69-76). New York: Chapman and Hall.

Hodges, D. M., Andrew, C. J., Johnson, D. A. & Hamilton, R. J. (1996). Antioxidant compound responses to chilling stress in differently sensitive inbred maize lines. Physiologiae Plantarum, 98, 685-692.

Jagota, S. K., & Dani, H. M. (1982). New colourimetric techniques for estimation of vitamin C using folin phenol reagent. Analytical Biochemistry, 127, 178-182.

Liu, Y., & Von Wirén, N. (2017). Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany, 68, 2581–2592.

Leichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigment of photosynthetic biomembranes. In Packer I & Dauce R (Eds.). A method in enzymology. (Vol. 148, pp. 350-382). New York: Academic Press.

Kumar, V., Kim, S. H., Priatama, R. A., Jeong, J. H., Adnan, M. R., Saputra, B. A., et al. (2020). NH4+ suppresses NO3−- dependent lateral root growth and alters gene expression and gravity response in OsAMT1 RNAi mutants of rice (Oryza sativa). Journal of Plant Biology. 63, 391– 407. https://doi.org/10.1007/s12374-020- 09263-5.

Murashige T., & Skoog T. (1962). A revised medium for rapid growth and bioassays with tobacco. Physiology Plantarum, 15, 43-425.

Naseri, A., Alirezalu, A., Noruzi, P., & Alirezalu, K. (2022). The effects of different ammonium to nitrate ratios on antioxidant activity, morpho-physiological and phytochemical traits of Moldavian balm (Dracocephalum moldavica). Scientific Reports, 12, 16841, https://doi.org/10.1038/ s41598-022-21338-6.

Pareek, S. Sagar, N. A., Sharma S., Kumar V., Agarwal T., González-Aguilar G. A., & Yahia E. M. (2017). Chlorophylls: Chemistry and biological functions. In Yahia, E. M. (Ed.) Fruit and vegetable phytochemicals: Chemistry and human health. (2nd ed., pp. 269–284). Haryana, India.

Popova, M., Bankova, V., Butovska, D., Petkov, V, Damyanova, B., Sabatini, A. G., Marcazzan, G. L., & Bogdanov, S. (2003). Poplar type propolis and analysis of its biologically active component. Honeybee Science, 24(2), 61-66.

Prinsi, B., Negrini, N., Morgutti, S., & Espen, L. (2020). Nitrogen starvation and nitrate or ammonium availability affect phenolic composition in green and purple basil differently. Agronomy, 10(4), 498.

Qadir, O., Siervo, M., Seal C. J., & Brandt, K. (2017). Manipulation of contents of nitrate, phenolic acids, chlorophylls, and carotenoids in lettuce (Lactuca sativa L.) via contrasting responses to nitrogen fertilizer when grown in a controlled environment. Journal of Agriculture and Food Chemistry, 65, 10003–10010.

Sun, T., Wang, T., Qiang Y., Zhao G., Yang J., Zhong H., Peng X., Yang J., & Li Y. (2022). CBL-interacting protein kinase OsCIPK18 regulates the response of ammonium toxicity in rice roots. Frontiers in Plant Science, 13, 863283. https://doi. org/10.3389/fpls.2022.863283

Viviani, A., Fambrini, M., Giordani, T., & Pugliesi, C. (2021). L-ascorbic acid in plant: From biosynthesis to its role in plant development and stress response. Agrochemical, 65(2) 151-171. https://doi. org/10.12871/00021857202124

Waterman, P. G., & Mole, S. (1994). Analysis of phenolic metabolites. Blackwell Scientific Publication. Cambridge.

Yamada Y., & Sato F. (2021). Transcription factors in alkaloid engineering. Biomolecules, 11, 1719. https://doi. org/10.3390/biom11111719.

Zuriah, I., Aziz, A., & Sifzizul, T. T. M. (2017). Phytochemical screening of in vitro Aglaonema simplex plantlet extracts as inducers of sr-b1 ligand expression. Journal of Sustainability Science and Management, 12(2), 1823-8556.

Additional Files

Published

2023-07-18

How to Cite

Abdullah-Asri, M.-R., Ahmad, A. ., Noor-Hassim, M.-F., & Ahmad, A. (2023). AMMONIUM-INDUCED CHANGES IN THE ASCORBIC ACID, CAROTENOID, PHENOLIC AND FLAVONOID CONTENT IN THE CULTURES OF Aglaonema simplex: Ammonium effects on Aglaonema simplex . Universiti Malaysia Terengganu Journal of Undergraduate Research, 5(3), 78–88. https://doi.org/10.46754/umtjur.v5i3.406