PARAMETRIC STUDY ON WAVE OVERTOPPING DUE TO WEDGE ANGLE AND FREEBOARD OF WAVECAT WAVE ENERGY CONVERTER
DOI:
https://doi.org/10.46754/umtjur.v4i2.273Keywords:
Wave Overtopping, Wave Energy Converter, Wedge Angle, CFDAbstract
Wave energy presents great potential in many coastal regions. This paper deals with WaveCat, a new wave energy converter (WEC) recently patented by the University of Santiago de Compostela. The WaveCat has two hulls, like a catamaran, and it operates according to the overtopping principle. The higher the overtopping amount collected in the reservoir, the higher the energy generated. The wedge angle and freeboard are two important parameters that contribute to a higher overtopping discharge. However, knowledge on the influence that wedge angle and freeboard have on wave overtopping is limited. Hence, this study aims to extend the borders of available knowledge by investigating the influence that two parameters have on wave overtopping discharge through simulation using computational fluid dynamics (CFD). The WEC was designed in the AutoCAD software. Then, the parameters were simulated using CFD. The parameters of wave height and wave period with a specified range are added and the relationship between wedge angle, freeboard and wave overtopping performance of WaveCat were analysed. The validation results showed good agreement between the simulation and physical experiment, with a percentage error of within 20%. The results are useful for further investigation related to optimising WaveCat parameters for selecting the best performance.
References
Astariz, S., & Iglesias, G. (2015). Enhancing wave energy competitiveness through co-located wind and wave energy farms. A review on the shadow effect. In Energies. https://doi.org/10.3390/en8077344 DOI: https://doi.org/10.3390/en8077344
Baquerizo, A., Losada, M. A., & Smith, J. M. (1998). Wave reflection from beaches: A predictive model. Journal of Coastal Research, 14(1), 291–298.
Contestabile, P., Ferrante, V., & Vicinanza, D. (2015). Wave energy resource along the coast of Santa Catarina (Brazil). Energies, 8(12), 14219–14243. https://doi. org/10.3390/en81212423 DOI: https://doi.org/10.3390/en81212423
Cornett, A. (2009). A global wave energy resource assessment. Sea Technology.
Deilami-Tarifi, M., Behdarvandi-Askar, M., Chegini, V., & Haghighi-Pour, S. (2016). Modeling of the changes in flow velocity on seawalls under different conditions using FLOW-3D Software. Open Journal of Marine Science. https://doi.org/10.4236/ ojms.2016.62026 DOI: https://doi.org/10.4236/ojms.2016.62026
Fernandez, H., Iglesias, G., Carballo, R., Castro, A., Fraguela, J. A., Taveira-Pinto, F., & Sanchez, M. (2012). The new wave energy converter WaveCat: Concept and laboratory tests. Marine Structures, 29(1), 58–70. https://doi.org/10.1016/j. marstruc.2012.10.002 DOI: https://doi.org/10.1016/j.marstruc.2012.10.002
Folley, M., & Whittaker, T. J. T. (2009). Analysis of the nearshore wave energy resource. Renewable Energy. https://doi. org/10.1016/j.renene.2009.01.003 DOI: https://doi.org/10.1016/j.renene.2009.01.003
Haas, D. K. A., Fritz, D. H. M., French, D. S. P., Smith, D. B. T., & Neary, D. V. (2011). Assessment of Energy Production Potential from Tidal Streams in the United States Final Project Report Award Number : DE-FG36-08GO18174. Georgia Tech Research Corporation. https://doi. org/10.2172/1219367 DOI: https://doi.org/10.2172/1219367
Iglesias, G., & Carballo, R. (2010). Wave energy and nearshore hot spots: The case of the SE Bay of Biscay. Renewable Energy. https:// doi.org/10.1016/j.renene.2010.03.016 DOI: https://doi.org/10.1016/j.renene.2010.03.016
Iglesias, Gregorio, Fernández, H., Carballo, R., & Castro, A. (n.d.). . ii, 2151–2158.
IRENA. (2014). Wave Energy Technology Brief. IRENA Ocean Energy Technology Brief 4, June, 28.
Jarocki. (2010). Wave Energy Converter Performance Modeling and Cost of. March. DOI: https://doi.org/10.1115/IMECE2010-37756
Jarocki, D., & Wilson, J. H. (2010). Wave energy converter performance modeling and cost of electricity assessment. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). https:// doi.org/10.1115/IMECE2010-37756.
Mathiesen, B. V., Lund, H., Connolly, D., Wenzel, H., Ostergaard, P. A., Möller, B., Nielsen, S., Ridjan, I., KarnOe, P., Sperling, K., & Hvelplund, F. K. (2015). Smart Energy Systems for coherent 100% renewable energy and transport solutions. In Applied Energy. https://doi.org/10.1016/j. apenergy.2015.01.075 DOI: https://doi.org/10.1016/j.apenergy.2015.01.075
Rusu, E., Pilar, P., & Guedes Soares, C. (2008). Evaluation of the wave conditions in Madeira Archipelago with spectral models. Ocean Engineering. https://doi. org/10.1016/j.oceaneng.2008.05.007 DOI: https://doi.org/10.1016/j.oceaneng.2008.05.007
Shih, H. J., Chang, C. H., Chen, W. B., & Lin, L. Y. (2018). Identifying the optimal offshore areas for wave energy converter deployments in Taiwanese waters based on 12-year model hindcasts. Energies. https:// doi.org/10.3390/en11030499 DOI: https://doi.org/10.3390/en11030499
Sun, C., Shang, J., Luo, Z., Lu, Z., & Wang, R. (2018). A Review of Wave Energy Extraction Technology. IOP Conference Series: Materials Science and Engineering. https:// doi.org/10.1088/1757-899X/394/4/042038 DOI: https://doi.org/10.1088/1757-899X/394/4/042038
Tedd, J. (2007). Testing, analysis and control of Wave Dragon, Wave Energy Converter. Civil Engineering, 9.
Tumin, A., Rusak, Z., & Fedorov, A. (2010). Theoretical fluid mechanics. In AIAA Journal. https://doi.org/10.2514/1.48391 DOI: https://doi.org/10.2514/1.48391
Waters, R., Engström, J., Isberg, J., & Leijon, M. (2009). Wave climate off the Swedish west coast. Renewable Energy. https://doi. org/10.1016/j.renene.2008.11.016 DOI: https://doi.org/10.1016/j.renene.2008.11.016