GREEN SYNTHESIS AND CHARACTERISATION OF MAGNESIUM OXIDE NANOPARTICLES USING ANNONA MURICATA LEAVES EXTRACT
DOI:
https://doi.org/10.46754/umtjur.v4i1.265Keywords:
Magnesium oxide nanoparticle, MgO-NPs, green synthesis, metal oxide, Annona muricataAbstract
The synthesis of magnesium oxide nanoparticles (MgO-NPs) using green synthesis has increased. In this study, green synthesis of MgO-NPs has been carried out by using Annona muricata. Annona muricata, popularly known as “graviola” or soursop, is a typical plant in countries with a tropical climate. The MgO-NPs were synthesised by mixing 30 mL of Annona muricata extract with 5 mM magnesium nitrate solution. The synthesised MgO-NPs were characterised by using Thermogravimetric Analysis (TGA) to identify the calcination temperature to form MgO-NPs, followed by a Fourier Transform Infrared (FTIR) analysis, X-ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM). From TGA, temperatures at 700 and 900 have been chosen. For FTIR characterisation, the 450-600 cm-1 peaks were assigned to MgO stretching vibrations. Under SEM, the morphology of synthesised MgO-NPs seems to be in irregular shape and the aggregation of particles were observed.
References
Abinaya, S., Kavitha, H. P., Prakash, M., Muthukrishnaraj, A. (2021). Green synthesis of Magnesium Oxide Nanoparticles and its applications: A review. Sustain. Chem Pharm, 19, 10036b. DOI: https://doi.org/10.1016/j.scp.2020.100368
Agu, K. C., & Okolie, P. N. (2017). Proximate composition, phytochemical analysis, and In-vitro antioxidant potentials of extract of Annona muricata (sousop). Food Sci. Nutr, 5, 1029-1036. DOI: https://doi.org/10.1002/fsn3.498
Alali, F. Q., Xiao-Xi, L., & McLaughlin, J. L. (1999). Annonaceous acetogenins: Recent progress. J. Nat. Prod, 62, 504-540. DOI: https://doi.org/10.1021/np980406d
Banele, V., Phumlani, T., Poslet, M. S., Jane, C. N., Lucky, M. S., & Richard M. M. (2013). Effects of precipitation temperature on nanoparticle surface area and antibacterial behavior of Mg (OH)2 and MgO Nanoparticles. Journal of Biomaterials and Nanobiotechnology, 4, 365-373. DOI: https://doi.org/10.4236/jbnb.2013.44046
Betancur-Galvis, L. A., Saez, J., Granados, H., Salazar, A., & Ossa, J. E. (1999). Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem. Ins. Oswaldo Cruz, 94, 531–535. DOI: https://doi.org/10.1590/S0074-02761999000400019
Correa-Gordillo J., Ortiz., J., S´anchez-Mejía, M., & Pach´on, H. (2012). Antioxidant activity in guanabana (Annona muricata L.): A literature review. Lat Am Caribb Bull Med Aromat Plants, 11 ,111-126.
Dean, P. A., Sigee, C. D., Estrada, B., & Pitman, K. J. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology. DOI: https://doi.org/10.1016/j.biortech.2010.01.065
Dhillon, G. S., Brar, S. K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Crit. Rev. Biotechnol, 32, 49–73. DOI: https://doi.org/10.3109/07388551.2010.550568
Egorova., E. M., & Revina, A. A. (2000). Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf. A, 168, 87–96. DOI: https://doi.org/10.1016/S0927-7757(99)00513-0
Felidj, N., Aubard. J., Evi, G. L. (2002). Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Physical Review B, 65, DOI: https://doi.org/10.1103/PhysRevB.65.075419
Gavamukulya, Y., Abou-Elella, F., Wamunyokoli, F. & El-Shemy, H. (2014). Phytochemical screening, antioxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pac J Trop Med., 7(1), S355-S363. DOI: https://doi.org/10.1016/S1995-7645(14)60258-3
Gibbs, R. D. (1974). Comparative chemistry and phylogeny of flowering plants, Tans. R. Soc. Cancer, 48. DOI: https://doi.org/10.2307/j.ctt1w0ddx8
Guadix-Montero, S., Alshammari, H., Dalebout, R. & Nowichka, E. (2017). Deactivation studies of Bimettalic AuPd nanoparticles supported on MgO during selective aerobic oxidation of alcohols. Applied Catalysis A: General, 546, 58-66. DOI: https://doi.org/10.1016/j.apcata.2017.07.045
Hakimeh, M & Abolghasem, D. (2012). Microwave-assisted Sol-Gel synthesis of MgO Nanoparticles and their catalytic activity in the synthesis of hantzsch 1,4-dihydropyridines. Chinese Journal of Catalysis, 33, 1502-1507. DOI: https://doi.org/10.1016/S1872-2067(11)60431-2
Hasmila, I., Natsir, H., & Soekamtu, N. H. (2019). Phytochemical analysis and antioxidant activity of soursop leaf extract (Annona muricata Linn.). Journal of Physics: Conference Series, 1341, 032027. DOI: https://doi.org/10.1088/1742-6596/1341/3/032027
Hassan, F., Miran, M. S., Simol, H. A., Susan, M. A. B. H., & Mollah, M. Y. A. (2015) Synthesis of ZnO nanoparticles by a hybrid electrochemical-thermal method: Influence of calcination temperature. Bangladesh Journal of Scientific and Industrial Research, 50(1), 21–28. DOI: https://doi.org/10.3329/bjsir.v50i1.23806
Hiromichi, H., & YukiyaHakuta. (2010). Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials, 3, 3794-3817. DOI: https://doi.org/10.3390/ma3073794
Hou, Y., Junfeng, Y., & Song, G. (2013). Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. The Royal Society of Chemistry J. Mater. Chem, 13, 1983– 1987. DOI: https://doi.org/10.1039/b305526d
Hulkoti, N. I., & T. C. Taranath. (2014). Biosynthesis of nanoparticles using microbes—a review. Colloids and Surfaces B: Biointerfaces, 121, 474-483. DOI: https://doi.org/10.1016/j.colsurfb.2014.05.027
Iravani, S. (2014). Bacteria in nanoparticle synthesis: current status and future prospects. International Scholarly Research Notices 2014. DOI: https://doi.org/10.1155/2014/359316
Jiahai, B., Fantao, M, Chuncheng, W., Yunxia, Z., Huihui, T., & Juncheng, L. 2011. Solution combustions synthesis and characteristics of nanoscale MgO powders2. Ceramics – Silikáty, 55, 20-25.
Kossouoh, C.), Moudachirou, M., Adjakidje, V., Chalchat, J. C. auatbesama, & Figue´re´do, G. (2007. Essential oil chemical composition of Annona muricata L. leaves from Benin. J. Essent. Oil Res. 19, 307–309. DOI: https://doi.org/10.1080/10412905.2007.9699288
Mageshwari, K., Mali, S. S., Sathyamoorthy, R., & Patil, P. S. (2013). Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder Technology, 249, 456–462. DOI: https://doi.org/10.1016/j.powtec.2013.09.016
Masuo, H., Kiyoshi, N., Makio, N., & Toyokazu, Y. (2007). Nanoparticle technology handbook. Elsevier.
Mohanty, S., Hollinshead, J., Jones, L., Jones, P. W., Thomas, D., Watson, A. A., Watson, D. G., Gray, A. I., Molyneux, R. J., & Nash, R. J. (2008). Annona muricata (Graviola): Toxic or therapeutic. Nat.Prod. Commun, 2, 31–33. DOI: https://doi.org/10.1177/1934578X0800300107
Nawwar, M., Ayoub, N., Hussein, S., & Hashim, A. (2012). Flavonol triglycoside and investigation of the antioxidant and cell-stimulating activities of Annona muricata Linn. Arch Pharm Res, 35, 761-767. DOI: https://doi.org/10.1007/s12272-012-0501-4
Oberlies, N. H., Jones, J. L., Corbett, T. H., Fotopoulous, S. S. & McLaughlin., J. L. (1995). Tumor cell growth inhibition by several Annonaceous acetogenins in an in vitro disk diffusion assay. Cancer Let, 96, 55–62. DOI: https://doi.org/10.1016/0304-3835(95)92759-7
Ogunyemi, S. O., Zhang, F., Abdallah, Y., Zhang, M., Wang, Y., Sun, G., Qiu, W., & Li, B. (2019). Biosynthesis and characterization of Magnesium Oxide and Manganese Dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. Artificial Cells, Nanomedicine and Biotechnology, 47(1), 2230-2239. DOI: https://doi.org/10.1080/21691401.2019.1622552
Ovais, M. (2016). Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine, 11, 3157-3177. DOI: https://doi.org/10.2217/nnm-2016-0279
Patel, P., Agarwal, P., Kanawaria, S., Kachhwaha, S., & Kothari, S. L. (2015). Plant-based synthesis of silver nanoparticles and their characterization. Nanotechnol. Plant Sci, 271–288. DOI: https://doi.org/10.1007/978-3-319-14502-0_13
Sastry, Murali., et al. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 85, 162- 170.
Tony, J., & Yiping, H. (2011). Antibacterial activities of Magnesium Oxide (MgO) nanoparticles against foodborne pathogens, J Nanopart Res, 13, 6877–6885. DOI: https://doi.org/10.1007/s11051-011-0595-5
Vijayameena, C., Subhashini, G., Loganayagi, M., & Ramesh, B. (2013). Phytochemical screening and assessment of antibacterial activity for the bioactive compounds in Annona muricata. Int J Curr Microbiol Appl Sci, 2, 1-8.
Wani, A. H., & Shah, M. A. (2012). A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. Journal of Applied Pharmaceutical Science, 03, 40-44.
Yusoff, H. M., Idris, N. H., Hipul, N. F., Mahamad Yusoff, N. F., Mohd. Izham., N. F., & Bhat, I. U. H. (2020). Green Synthesis of Zinc Oxide Nanoparticles using Black Tea extract and its potential as Anode Material in Sodium-Ion batteries. Malaysian Journal of Chemistry, 22(2), 43-51.
Yusoff, H. M., Hazwani, N-U., Hassan, N. & Izwani, F. (2015). Comparison of Sol Gel and Dehydration Magnesium Oxide (MgO) as a catalyst in Michael Addition Reaction. International Journal of Integrated Engineering, 7(3), 43-50.
Zafra-Polo, M. C., Figade`re, B., Gallardo, T., Tormo, J. R., & Cortes, D. (1998). Phytochemistry, 48, 1087-1117. DOI: https://doi.org/10.1016/S0031-9422(97)00917-5
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 PENERBIT UMT
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.