A REVIEW: THE EFFECTIVENESS OF EDIBLE COATING INCORPORATED WITH RED MACROALGAE (Kappaphycus alvarezii) EXTRACT ON THE POST HARVEST QUALITY OF FRUITS

Authors

  • NUR SYAMIMI HAZIQAH ACHONG@ASMAT Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu
  • FAUZIAH TUFAIL AHMAD Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu

DOI:

https://doi.org/10.46754/umtjur.v3i4.249

Keywords:

Edible coating, red macroalgae, post-harvest quality, fruits

Abstract

Fruits and vegetables are the main fresh produce that receive high demand among consumers because of the nutritional properties to boost the human health. However, not all fruits and vegetables are durable due to the ongoing release of ethylene even when harvested. Damaged produce will not be accepted by the customer and will cause post-harvest losses. It was estimated that about 30% of fruits and vegetables are damaged or affected by microorganisms, insects, pre- and post-harvest conditions during transportation and improper storage conditions. Edible coating is an effective approach for fruit preservation. It provides good barrier properties towards carbon dioxide, oxygen, and moisture vapor and at the same time beneficial for the environment and human health. The aim of this review is to investigate the potential of red macroalgae (Kappaphycus alvarezii) as an edible fruit coating. This edible red macroalgae abundant in Sabah is widespread around the world due to their carrageenan properties. Carrageenan is normally used as the main edible coating material due to its thickening stability and natural antioxidant. The carrageenan film from these algae is able to replace synthetic packaging and is more environmentally friendly. The abundant source of this algae in Sabah will ensure sustainability and cost effectiveness besides increasing the socio-economy of the local community. Red macroalgae has potential to be used as a bio preservative in fresh produce as it shows better quality characteristics in physicochemical properties of fruits such as weight loss, colour and firmness.

References

Augusto, A., Simões, T., Pedrosa, R., & Silva, S. F. (2016). Evaluation of seaweed extracts functionality as post-harvest treatment for minimally processed Fuji apples. Innovative Food Science & Emerging Technologies, 33, 589-595. DOI: https://doi.org/10.1016/j.ifset.2015.10.004

Bindu, M.S., & Levine, I.A. (2011) The commercial red seaweed Kappaphycus alvarezii overview on farming and environment. Journal of Applied Phycology, 23(4), 789-796. DOI: https://doi.org/10.1007/s10811-010-9570-2

Campo, V.L., Kawano,D.F., da Silva Jr, D.B., & Carvalho, I. (2009) Carrageenans: Biological properties, chemical modifications and structural analysis- A review. Carbohydrate polymers, 77(2), 167-180. DOI: https://doi.org/10.1016/j.carbpol.2009.01.020

Chakraborty, I., Chattopadhyay, A. R. U. P., Chakraborty, I., & Chattopadhyay, A. (2018). Pre-and post-harvest losses in vegetables. Advances in Postharvest Technologies of Vegetable Crops; CRC Press: Boca Raton, FL, USA, 25-87. DOI: https://doi.org/10.1201/9781315161020-2

Cian, R. E., Drago, S. R., De Medina, F. S., & Martínez-Augustin, O. (2015) Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota. Marine Drugs, 13(8), 5358- 5383. DOI: https://doi.org/10.3390/md13085358

Denis, C., Ledorze, C., Jaouen, P., & Fleurence, J. (2009) Comparison of different procedures for the extraction and partial purification of R-phycoerythrin from the red macroalga Grateloupia turuturu. Botanica Marina, 52(3), 278-281. DOI: https://doi.org/10.1515/BOT.2009.034

Gade, R., Tulasi, M. S., & Bhai, V. A. (2013). Seaweeds: a novel biomaterial. International Journal of Pharmacy and Pharmaceutical Sciences, 5(2), 975-1491.

Galgano, F. (2015). Biodegradable packaging and edible coating for fresh-cut fruits and vegetables. Italian Journal of Food Science, 27(1), 1-20.

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. DOI: https://doi.org/10.1016/j.tifs.2011.02.004

Ficko-Blean, E., Préchoux, A., Thomas, F., Rochat, T., Larocque, R., Zhu, Y., & Viart, B. (2017) Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nature Communications, 8(1), 1-17. DOI: https://doi.org/10.1038/s41467-017-01832-6

Goh, C. S., & Lee, K. T. (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable and Sustainable Energy Reviews, 14(2), 842-848. DOI: https://doi.org/10.1016/j.rser.2009.10.001

Gupta, S., & Abu-Ghannam, N. (2011). Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science & Technology, 22(6), 315- 326. DOI: https://doi.org/10.1016/j.tifs.2011.03.011

Ghadiryanfar, M., Rosentrater, K. A., Keyhani, A., & Omid, M. (2016). A review of macroalgae production, with potential applications in biofuels and bioenergy. Renewable and Sustainable Energy Reviews, 54, 473-481. DOI: https://doi.org/10.1016/j.rser.2015.10.022

Haddar, A., Sellimi, S., Ghammouchi, r., Alvarez, O.M., Nasri, M., & Bougatef, A. (2012) Functional, antioxidant and film-forming properties of tuna-skin gelatin with brown algae extract. International Journal of Biological Macromolecules, 51 (4), 477- 483. DOI: https://doi.org/10.1016/j.ijbiomac.2012.06.016

Hamzah, H. M., Osman, A., Tan, C. P., & Ghazali, F. M. (2013) Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika). Postharvest Biology and Technology, 75, 142-146. DOI: https://doi.org/10.1016/j.postharvbio.2012.08.012

Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018) Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095-1107. DOI: https://doi.org/10.1016/j.ijbiomac.2017.11.097

Jard, G., Marfaing, H., Carrère, H., Delgenès, J. P., Steyer, J. P., & Dumas, C. (2013) French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products. Bioresource Technology, 144, 492-498. DOI: https://doi.org/10.1016/j.biortech.2013.06.114

Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2017) Characteristics of Eucheuma cottonii waste from East Malaysia: physical, thermal and chemical composition. European Journal of Phycology, 52(2), 200-207. DOI: https://doi.org/10.1080/09670262.2016.1248498

Karbowiak, T., Debeaufort, F., & Voilley, A. (2007) Influence of thermal process on structure and functional properties of emulsion-based edible films. Food Hydrocolloids, 21(5-6), 879-888. DOI: https://doi.org/10.1016/j.foodhyd.2006.07.017

Lacroix, M., & Le Tien, C. (2005) Edible films and coatings from nonstarch polysaccharides. In Innovations in food packaging (pp. 338-361). Academic Press. DOI: https://doi.org/10.1016/B978-012311632-1/50052-8

Lahaye, M., & Kaeffer, B. (1997) Seaweed dietary fibres: structure, physic-chemical and biological properties relevant to intestinal physiology. Science des Aliments (France).

Larotonda, F. D. S. (2007) Biodegradable films and coatings obtained from carrageenan from Mastocarpus stellatus and starch from Quercus suber.

Laufer, G., Kirkland, C., Cain, A. A., & Grunlan, J. C. (2013) Oxygen barrier of multilayer thin films comprised of polysaccharides and clay. Carbohydrate Polymers, 95(1), 299-302. DOI: https://doi.org/10.1016/j.carbpol.2013.02.048

Lee, R. E. (2008) Phycology. Cambridge University Press.

Li, D., Li, L., Luo, Z., Lu, H., & Yue, Y. (2017) Effect of nano-ZnO-packaging on chilling tolerance and pectin metabolism of peaches during cold storage. Scientia Horticulturae, 225, 128-133. DOI: https://doi.org/10.1016/j.scienta.2017.07.003

Mahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., & Geyer, M. (2014) Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017), 20130309. DOI: https://doi.org/10.1098/rsta.2013.0309

Masarin, F., Cedeno, F. R. P., Chavez, E. G. S., De Oliveira, L. E., Gelli, V. C., & Monti, R. (2016) Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnology for Biofuels, 9(1), 122. DOI: https://doi.org/10.1186/s13068-016-0535-9

Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020) Polysaccharides,protein and lipid-based natural edible films in food packaging: a review. Carbohydrate Polymers, 116178. DOI: https://doi.org/10.1016/j.carbpol.2020.116178

Mustapha, S., Chandar, H., Abidin, Z. Z., Saghravani, R., & Harun, M. Y. (2011) Production of semi-refined carrageenan from Eucheuma cotonii.

Mbele, N. P. (2017) Evaluation of fruit growth and development over a very extended harvesting period of’ Hass’,‘Fuerte’,‘Gem’and ‘Ryan’avocado fruit (Doctoral dissertation).

Nauyoma, L. T. (2015) Environmental factors associated with Juttadinteria albata (L. Bolus) L. Bolus, population structure and assessment of its performance in trial planting at Sendelingsdrift mine (Doctoral dissertation).

Ochoa-Reyes, E., Martínez-Vazquez, G., Saucedo-Pompa, S., Montañez, J., Rojas- Molina, R., Leon-Zapata, M. A. D., & Aguilar, C. N. (2019) Improvement of shelf life quality of green bell peppers using edible coating formulations. Journal of Microbiology, Biotechnology and Food Sciences, 2019, 2448-2451.

Oms-Oliu, G., Soliva-Fortuny, R., & Martín- Belloso, O. (2008). Using polysaccharide-based edible coatings to enhance quality and antioxidant properties of fresh-cut melon. LWT-Food Science and Technology, 41(10), 1862-1870. DOI: https://doi.org/10.1016/j.lwt.2008.01.007

Ortiz-Tafoya, M. C., Rolland-Sabaté, A., Garnier, C., Valadez-García, J., & Tecante, A. (2018) Thermal, conformational and rheological properties of κ-carrageenan-sodium stearoyl lactylate gels and solutions. Carbohydrate Polymers, 193, 289-297. DOI: https://doi.org/10.1016/j.carbpol.2018.04.002

Pascall, M. A., & Lin, S. J. (2013) The application of edible polymeric films and coatings in the food industry. Food Processing & Technology.

Pavlath, A. E., & Orts, W. (2009) Edible films and coatings: why, what, and how?. In Edible films and coatings for food applications (pp. 1-23). Springer, New York, NY. DOI: https://doi.org/10.1007/978-0-387-92824-1_1

Pereira, L. (2017) Vibrational Spectroscopy of Seaweed Polysaccharides. In Seaweed Polysaccharides (pp. 83-100). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-809816-5.00006-2

Quattara, B., Simard, R. E., Piette, G., Begin, A., & Holley, R. A. (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. International Journal of Food Microbiology, 62,139–148. DOI: https://doi.org/10.1016/S0168-1605(00)00407-4

Raghav, P. K., Agarwal, N., & Saini, M. (2016) Edible coating of fruits and vegetables: a review. International Journal of Scientific Research and Modern Education (IJSRME) Volume I (1).

Ramani, S., & Aswini, M. (2020) Effect of seaweed coating on quality characteristics and shelf life of tomato (Lycopersicon esculentum mill). Food Science and Human Wellness.

Renn, D. (1997) Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends in Biotechnology, 15(1), 9-14. DOI: https://doi.org/10.1016/S0167-7799(96)10069-X

Rudolph, B. (1986) Seaweed Products- Economic Importance of Red Algae in The Marine and Freshwater Natural Products (Flick, GG. and Martin, RE, Eds), Chapter 22B.

Sade, A., Ali,I., & Ariff, M.R.M. (2006) The seaweed industry in Sabah, East Malaysia. Jati Journal of Southeast Asian Studies, 11, 97-107.

Samarakoon, K., & Jeon, Y. J. (2012) Bio-functionalities of proteins derived from marine algae—A review. Food Research International, 48(2), 948-960. DOI: https://doi.org/10.1016/j.foodres.2012.03.013

Seol, K. H., Lim, D. G., Jang, A., Jo, C., & Lee, M. (2009) Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 C. Meat Science, 83(3), 479-483. DOI: https://doi.org/10.1016/j.meatsci.2009.06.029

Siah, W. M., Aminah, A., & Ishak, A. (2015) Edible films from seaweed (Kappaphycus alvarezii). International Food Research Journal, 22(6), 2230.

Soares, F., Chopin, T., & Pereira, L. (2016) Review of the chemotaxonomic significance of some phycocolloids present in economically important algae (Gigartinales, Rhodophyta). Chapter, 8, 160-188.

Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A. W. A., & Vikhraman, M. (2013) Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110- 123. DOI: https://doi.org/10.1016/j.tifs.2013.08.001

Tan, J., Lim, P.E. and Phang, S.M. (2011) Phylogenetic relationships of Kappaphycus and Euchema in Malaysia. Seminar Rumpai Laut Kebangsaan 2011, Tawau, Sabah.

Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360-374 DOI: https://doi.org/10.1016/j.carbpol.2015.10.074

Thakur, V. K., Thakur, M. K., & Kessler, M. R. (Eds.). (2017) Handbook of Composites from Renewable Materials, Nanocomposites: Science and Fundamentals (Vol. 7). John Wiley & Sons. DOI: https://doi.org/10.1002/9781119441632

Tobacman, J. K. (2001) Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environmental Health Perspectives, 109(10), 983-994. DOI: https://doi.org/10.1289/ehp.01109983

Urbano, M.G., & Goñi, I. (2002) Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre. Food Chemisry, 76(3), 281-286. DOI: https://doi.org/10.1016/S0308-8146(01)00273-4

Usov, A.I. (1992) Sulfated polysaccharides of the red seaweeds. Food Hydrocolloids, 6(1), 9-23. DOI: https://doi.org/10.1016/S0268-005X(09)80055-6

Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & Gonzalez-Martinez, C. (2008) Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496-511. DOI: https://doi.org/10.1080/10408390701537344

Yousuf, B., Qadri, O. S., & Srivastava, A. K. (2018) Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT- Food Science and Technology, 89, 198-209. DOI: https://doi.org/10.1016/j.lwt.2017.10.051

Yu,S., Blennow, a., Bojko, M., Madsen, F., Olsen,C.E., & Engelsen, S.B. (2002) Physico-chemical characterization of floridean starch of red algae. Starch- Stärke, 54(2), 66-74. DOI: https://doi.org/10.1002/1521-379X(200202)54:2<66::AID-STAR66>3.0.CO;2-B

Yun, E. J., Lee, S., Kim, H. T., Pelton, J. G., Kim, S., Ko, H. J., & Kim, K. H. (2015) The novel catabolic pathway of 3, 6-anhydro- L-galactose, the main component of red macroalgae, in a marine bacterium. Environmental Microbiology, 17(5), 1677- 1688. DOI: https://doi.org/10.1111/1462-2920.12607

Additional Files

Published

2021-10-31

How to Cite

ACHONG@ASMAT, N. S. H., & AHMAD, F. T. . (2021). A REVIEW: THE EFFECTIVENESS OF EDIBLE COATING INCORPORATED WITH RED MACROALGAE (Kappaphycus alvarezii) EXTRACT ON THE POST HARVEST QUALITY OF FRUITS. Universiti Malaysia Terengganu Journal of Undergraduate Research, 3(4), 163–172. https://doi.org/10.46754/umtjur.v3i4.249