EFFECT OF SILICON NUTRIENT AND SALINITY (ABIOTIC STRESS) ON TOMATO PLANT (Solanum lycopersicum)

Authors

  • NURAAINA ATIQAH AB GHANI Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu (UMT)
  • ASAMOAH FREDERICK OSEI Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu (UMT)
  • CHONG SOK LENG Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu (UMT)
  • SITI NORDAHLIAWATE MOHAMED SIDIQUE Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu (UMT)

DOI:

https://doi.org/10.46754/umtjur.v3i4.236

Keywords:

Tomato, silicon, silicic acid, salinity and abiotic

Abstract

Tomato (Solanum lycopersicum) imports have increased in Malaysia due to high demand. One of the constraints to local production is excessive salinity in soils that leads to toxicity in crops, reduction in soil fertility and reduction of availability of water to tomato plant that is known to be sensitive to high salinity. Nevertheless, silicon nutrient proven could protect plants from abiotic stress. Therefore, the objectives of this study were to determine the plant growth of tomato plant treated with silicon (Si) under salinity stress and to observe the physical changes of stems. A total of ten treatments (T1 – T10) were applied with different concentrations of silicon: 0.5% Si (v/v), 1.5% Si (v/v), 2.5% Si (v/v), potassium silicate as positive control whereas negative control (only water and 0.5% NaCl) and a mixture of equal volumes of the silicon and potassium silicate treatments with 0.5% NaCl. The treatments were applied once a week (40 ml for each plant pot). Throughout this study, plant growth data was collected (plant height, diameter of stems, time of anthesis, number of fruits, and chlorophyll content). Results showed that with 0.5% Si (v/v) and 1.5% Si (v/v) (with 0.5% NaCl), the tomato plants grow well especially in plant height, number of leaves and chlorophyll contents. Furthermore, cross section of stems showed a significant difference (p<0.05) in stem diameter among treated plants [2.5% potassium silicate (T4), 0.5% Si (v/v) + 0.5% NaCl (T6) and 2.5% potassium silicate + 0.5% NaCl (T9)] and control (0.5% NaCl). However, the largest vascular bundle width was recorded in plants treated with 1.5% Si (v/v). This study has proven that tomato plants could uptake silicon and improve the plant growth under salinity stress conditions and giving potential for Si as biostimulant to other Solanaceae family (potato, pepper and eggplant).

References

Adams, P. (2002). Nutritional control in hydroponics. In: Savvas, D. and Passam, H. C. (eds), Hydroponic Production of Vegetables and Ornamentals. Athens, Greece, Embryo Publications. p.211-261.

Ahmad, R., Zaheer, S. H., & Ismail, S. (1992). Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Science, 85, 43-50. DOI: https://doi.org/10.1016/0168-9452(92)90092-Z

Al-aghabary, K., Zhu, Z., & Shi, Q. (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27(12), 2101-2115. DOI: https://doi.org/10.1081/PLN-200034641

Alburquerque, N., Burgos, L., & Egea, J. (2004). Influence of flower bud density, flower bud drop and fruit set on apricot productivity. Scientia Horticulturae, 102(4), 397-406. DOI: https://doi.org/10.1016/j.scienta.2004.05.003

Avestan, S., Ghasemnezhad, M., Esfahani, M., & Byrt, C. (2019). Application of Nano- Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants. Agronomy Journal, 9 (5), 246. DOI: https://doi.org/10.3390/agronomy9050246

Bélanger, R. R., Bowen, P. A., Ehret, D. L., & Menzies, J. G. (1995). Soluble silicon: Its role in crop and disease management of greenhouse crops. Plant Disease, 79(4), 329. DOI: https://doi.org/10.1094/PD-79-0329

Bélanger R. R., Dik A. J., & Menzies G. J. (1998). Powdery mildews: recent advances toward integrated control. In: Boland G. J. and Kuykendall L. D., (eds), Plant-microbe Interactions and Biological Control. New York, Marcel Dekker. pp. 89-109.

Bergougnoux, V. (2014). The history of tomato: from domestication to biopharming. Biotechnology Advances, 32(1), 170-189. DOI: https://doi.org/10.1016/j.biotechadv.2013.11.003

Bradbury, M., & Ahmad, R. (1990). The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant and Soil, 125(1), 71-74. DOI: https://doi.org/10.1007/BF00010745

Cuartero, J., & Fernández-Muñoz, R. (1998). Tomato and salinity. Scientia Horticulturae, 78(1-4), 83-125. DOI: https://doi.org/10.1016/S0304-4238(98)00191-5

Dehghanipoodeh, S., Ghobadi, C., Baninasab, B., Gheysari, M., & Shiranibidabadi, S. (2018). Effect of silicon on growth and development of strawberry under water deficit conditions. Horticultural Plant Journal, 4(6), 226-232. DOI: https://doi.org/10.1016/j.hpj.2018.09.004

Epstein, E. (1999). Silicon. Annual Review of Plant Biology, 50(1), 641-664. DOI: https://doi.org/10.1146/annurev.arplant.50.1.641

Exley, C. (2015). A possible mechanism of biological silicification in plants. Frontiers in Plant Science, 6:853. DOI: https://doi.org/10.3389/fpls.2015.00853

Fauteux, F., Rémus-Borel, W., Menzies, J. G., & Bélanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters, 249, 1–6. DOI: https://doi.org/10.1016/j.femsle.2005.06.034

Guerriero, G., Hausman, J.-F., & Legay, S. (2016). Silicon and the plant extracellular matrix. Frontiers in Plant Science, 7:463. DOI: https://doi.org/10.3389/fpls.2016.00463

Gunes, A., Inal, A., Bagci, E. G., & Pilbeam, D. J. (2007). Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil, 290(1-2), 103-114. DOI: https://doi.org/10.1007/s11104-006-9137-9

Hashemi, A., Abdolzadeh, A., & Sadeghipour, H. R. (2010). Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science & Plant Nutrition, 56(2), 244-253. DOI: https://doi.org/10.1111/j.1747-0765.2009.00443.x

Hammond, K. E., Evans, D. E., & Hodson, M. J. (1995). Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant and Soil, 173(1), 89-95. DOI: https://doi.org/10.1007/BF00155521

Hertwig, B., Streb, P., & Feierabend, J. (1992). Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiology, 100(3), 1547-1553. DOI: https://doi.org/10.1104/pp.100.3.1547

Hoffmann, J., Berni, R., Hausman, J. F., & Guerriero, G. (2020). A Review on the Beneficial Role of Silicon against Salinity in Non-Accumulator Crops: Tomato as a Model. Biomolecules, 10, 1284. DOI: https://doi.org/10.3390/biom10091284

Inanaga, S., & Okasaka, A. (1995). Calcium and silicon binding compounds in cell walls of rice shoots. Soil Science and Plant Nutrition, 41(1), 103-110. DOI: https://doi.org/10.1080/00380768.1995.10419563

Islam, G. M. N., Arshad, F. M., Radam, A., & Alias, E. F. (2012). Good agricultural practices (GAP) of tomatoes in Malaysia: Evidences from Cameron Highlands. African Journal of Business Management, 6(27), 7969-7976. DOI: https://doi.org/10.5897/AJBM10.1304

Lee, S. K., Sohn, E. Y., Hamayun, M., Yoon, J. Y., & Lee, I. J. (2010). Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems, 80(3), 333-340. DOI: https://doi.org/10.1007/s10457-010-9299-6

Li, H. Zhu, Y. Hu, Y. Han, W., & Gong, H. (2015). Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiologiae Plantarum, 37, 71. DOI: https://doi.org/10.1007/s11738-015-1818-7

Liang, Y. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209, 217–224. DOI: https://doi.org/10.1023/A:1004526604913

Liang Y. C. (1998). Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere, 8, 289–296.

Liang, Y., Sun, W., Zhu, Y.-G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 147, 422–428. DOI: https://doi.org/10.1016/j.envpol.2006.06.008

Liang, Y., Nikolic, M., Bélanger, R., Gong, H., & Song, A. (2015). Effect of silicon on crop growth, yield and quality. Silicon in Agriculture. Springer, Dordrecht, pp. 209-223, DOI: https://doi.org/10.1007/978-94-017-9978-2_11

Ma J. F., & Takahashi E. (2002). Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier B.V. Amsterdam, p. 274. DOI: https://doi.org/10.1016/B978-044451166-9/50009-9

Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11-18. DOI: https://doi.org/10.1080/00380768.2004.10408447

Ma, J., Cai, H., He, C., Zhang, W., & Wang, L. (2015). A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytologist, 206, 1063–1074. DOI: https://doi.org/10.1111/nph.13276

Maggio, A., De Pascale, S., Angelino, G., Ruggiero, C., & Barbieri, G. (2004). Physiological response of tomato to saline irrigation in long-term salinized soils. European Journal of Agronomy, 21, 149–159. DOI: https://doi.org/10.1016/S1161-0301(03)00092-3

Maggio, A., Raimondi, G., Martino, A., & De Pascale, S. (2007). Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 59(3), 276-282. DOI: https://doi.org/10.1016/j.envexpbot.2006.02.002

Marodin, J. C., Resende, J. T., Morales, R. G., Silva, M. L., Galvão, A. G., & Zanin, D. S. (2014). Yield of tomato fruits in relation to silicon sources and rates. Horticultura Brasileira, 32(2), 220-224. DOI: https://doi.org/10.1590/S0102-05362014000200018

Massaretto, I.L., Albaladejo, I., Purgatto, E., Flores, F.B., Plasencia, F., Egea-Fernández, J.M., Bolarin, M.C., & Egea, I. (2018). Recovering tomato landraces to simultaneously improve fruit yield and nutritional quality against salt stress. Frontiers in Plant Science, 9, 1778. DOI: https://doi.org/10.3389/fpls.2018.01778

Miyake, Y., & Takahashi, E. (1986). Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Soil Science and Plant Nutrition, 32(2), 321-326. DOI: https://doi.org/10.1080/00380768.1986.10557510

Oosterhuis, D., Loka, D., Kawakami, E., & Pettigrew, W. (2014). The physiology of potassium in crop production. Advances in Agronomy, 126, 203–234. DOI: https://doi.org/10.1016/B978-0-12-800132-5.00003-1

Rogalla, H., & Römheld, V. (2002). Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell and Environment, 25, 549–555. DOI: https://doi.org/10.1046/j.1365-3040.2002.00835.x

Romero-Aranda, M. R., Jurado, O., & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology, 163(8), 847-855. DOI: https://doi.org/10.1016/j.jplph.2005.05.010

Romero-Aranda, R., Soria, T. & Cuartero, J. (2001). Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science, 160(2), 265-272. DOI: https://doi.org/10.1016/S0168-9452(00)00388-5

Saberi, A. R., Siti Aishah, H., Halim, R. A., & Zaharah, A. R. (2011). Morphological responses of forage sorghums to salinity and irrigation frequency. African Journal of Biotechnology, 47: 9647-9656. DOI: https://doi.org/10.5897/AJB11.778

Saqib, M., Zoerb, C., & Schubert, S. (2008). Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Functional Plant Biology, 35, 633–639. DOI: https://doi.org/10.1071/FP08100

Savvas, D. (2002). Nutrient solution recycling. p.299-343. In: Savva, D. and Passam, H. C. (eds). Hydroponic Production of Vegetables and Ornamentals. Athens, Greece, Embryo Publications.

Stamatakis, A., Papadantonakis, N., Savvas, D., Lydakis-Simantiris, N. & Kefalas, P. (2003, July). Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. In International Symposium on Managing Greenhouse Crops in Saline Environment 609 (pp. 141-147). DOI: https://doi.org/10.17660/ActaHortic.2003.609.18

The S. Y., & Koh H. L. (2016). Climate change and soil salinization: impact on agriculture, water and food security. International Journal of Agriculture, Forestry and Plantation, 2 (February), 1-9.

Teixeira, G.C.M., de Mello Prado, R., Oliveira, K.S. et al. (2020). Silicon Increases Leaf Chlorophyll Content and Iron Nutritional Efficiency and Reduces Iron Deficiency in Sorghum Plants. Journal of Soil Science and Plant Nutrition, 20, 1311–1320. DOI: https://doi.org/10.1007/s42729-020-00214-0

Wang, Y. X., Stass, A., & Horst, W. J. (2004). Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiology, 136, 3762–3770. DOI: https://doi.org/10.1104/pp.104.045005

White, P. J., & Karley, A. J. (2010). Potassium Cell Biology of Metals and Nutrients. Berlin: Springer, 199–224. DOI: https://doi.org/10.1007/978-3-642-10613-2_9

Zhu, Y., & Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34, 455–472. DOI: https://doi.org/10.1007/s13593-013-0194-1

Additional Files

Published

2021-10-31

How to Cite

AB GHANI, N. A. ., OSEI, A. F., LENG, C. S. ., & MOHAMED SIDIQUE, S. N. . (2021). EFFECT OF SILICON NUTRIENT AND SALINITY (ABIOTIC STRESS) ON TOMATO PLANT (Solanum lycopersicum). Universiti Malaysia Terengganu Journal of Undergraduate Research, 3(4), 43–54. https://doi.org/10.46754/umtjur.v3i4.236