MODELING AND SIMULATION OF 1.8 KW GRID-CONNECTED PHOTOVOLTAIC SYSTEM USING MATLAB
DOI:
https://doi.org/10.46754/umtjur.v3i4.233Keywords:
PV system, MATLAB/simulink, MPPT, DC/DC boost converter, incremental conductance methodAbstract
A maximum power point tracking (MPPT) DC/DC converter for a photovoltaic (PV) system is an important component in a PV system. The converter is used to convert the value of DC voltage produced by PV panels to a value accepted by the inverter for on-grid, or battery for off-grid system. In addition, the MPPT is used to extract and maintain the solar PV to its maximum power in all conditions. However, the values of components used in literature of MPPT DC/DC converter for a specific PV module cannot be applied for different capacity. Although sets of equations are given in literature to determine the values of inductor and capacitor used in the circuit, the calculated values do not produce the desired output in most cases because of unclear explanation. The validation of input parameters of the converter is also not properly presented for different solar irradiance and temperature. The efficiency of the converter is still low. Hence, this paper presents step-by-step process on how to design a MPPT DC/DC boost converter in MATLAB/Simulink environment. The incremental conductance method is used as MPPT algorithm to control the duty cycle of the converter. Then, a thorough analysis is done by simulating the developed model under different solar irradiance and temperature. Simulation results are then compared with the theoretical values from I-V and P-V curves of the selected PV modules. The results show that the proposed MPPT DC/DC converter is able to extract maximum power from PV modules and the output power produced by the converter also indicates that the converter has a high efficiency at 99.7% in all selected values of solar irradiance and temperature.
References
Ahmed, J., & Salam, Z. (2015). An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Applied Energy, 150, 97–108. https://doi.org/10.1016/j. apenergy.2015.04.006 DOI: https://doi.org/10.1016/j.apenergy.2015.04.006
Al-Shamani, A. N., Sopian, K., Mat, S., & Abed, A. M. (2017). Performance enhancement of photovoltaic grid-connected system using PVT panels with nanofluid. Solar Energy, 150, 38–48. https://doi.org/10.1016/j. solener.2017.04.005 DOI: https://doi.org/10.1016/j.solener.2017.04.005
Al-Waeli, A. H. A., Sopian, K., Kazem, H. A., & Chaichan, M. T. (2018). Nanofluid based grid connected PV/T systems in Malaysia: A techno-economical assessment. Sustainable Energy Technologies and Assessments, 28(June), 81–95. https://doi.org/10.1016/j. seta.2018.06.017 DOI: https://doi.org/10.1016/j.seta.2018.06.017
Alik, R., & Jusoh, A. (2018). An enhanced P&O checking algorithm MPPT for high tracking efficiency of partially shaded PV module. Solar Energy, 163 (December 2017), 570–580. https://doi.org/10.1016/j. solener.2017.12.050 DOI: https://doi.org/10.1016/j.solener.2017.12.050
Bellia, H., Youcef, R., & Fatima, M. (2014). A detailed modeling of photovoltaic module using MATLAB. NRIAG Journal of Astronomy and Geophysics, 3(1), 53–61. https://doi.org/10.1016/j.nrjag.2014.04.001 DOI: https://doi.org/10.1016/j.nrjag.2014.04.001
Ghafoor, A., & Munir, A. (2015). Design and economics analysis of an off-grid PV system for household electrification. Renewable and Sustainable Energy Reviews, 42, 496–502. https://doi.org/10.1016/j. rser.2014.10.012 DOI: https://doi.org/10.1016/j.rser.2014.10.012
Gomathy, S., Saravanan, S., & Thangavel, S. (2012). Design and Implementation of Maximum Power Point Tracking ( MPPT ). Algorithm for a Standalone PV System. 3(3), 1–7.
Huang, L., Qiu, D., Xie, F., Chen, Y., & Zhang, B. (2017). Modeling and stability analysis of a single-phase two-stage grid-connected photovoltaic system. Energies, 10(12). https://doi.org/10.3390/en10122176 DOI: https://doi.org/10.3390/en10122176
Jain, K., Gupta, M., & Kumar Bohre, A. (2018). Implementation and Comparative Analysis of PO and INC MPPT Method for PV System. India International Conference on Power Electronics, IICPE, 2018-Decem, 1–6. https://doi.org/10.1109/ IICPE.2018.8709519 DOI: https://doi.org/10.1109/IICPE.2018.8709519
Krismadinata, Rahim, N. A., Ping, H. W., & Selvaraj, J. (2013). Photovoltaic Module Modeling using Simulink/Matlab. Procedia Environmental Sciences, 17, 537–546. https://doi.org/10.1016/j. proenv.2013.02.069 DOI: https://doi.org/10.1016/j.proenv.2013.02.069
Kusch-Brandt. (2019). Urban Renewable Energy on the Upswing: A Spotlight on Renewable Energy in Cities in REN21’s “Renewables 2019 Global Status Report.” In Resources (Vol. 8, Issue 3). https://doi. org/10.3390/resources8030139 DOI: https://doi.org/10.3390/resources8030139
Loukriz, A., Haddadi, M., & Messalti, S. (2016). Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems. ISA Transactions, 62, 30–38. https://doi.org/10.1016/j.isatra.2015.08.006 DOI: https://doi.org/10.1016/j.isatra.2015.08.006
Mohamed, H. A., Khattab, H. A., Mobarka, A., & Morsy, G. A. (2016). Design, control and performance analysis of DC-DC boost converter for stand-alone PV system. 2016 18th International Middle-East Power Systems Conference, MEPCON 2016 - Proceedings, 101–106. https://doi. org/10.1109/MEPCON.2016.7836878 DOI: https://doi.org/10.1109/MEPCON.2016.7836878
Raj, A., Arya, S. R., & Gupta, J. (2020). Solar PV array-based DC–DC converter with MPPT for low power applications. Renewable Energy Focus, 34(September), 109–119. https://doi.org/10.1016/j.ref.2020.05.003 DOI: https://doi.org/10.1016/j.ref.2020.05.003
S.Sheik, M., & Devaraj, D. (2014). Simulation and Analysis of Stand-alone Photovoltaic System with Boost Converter using MATLAB/Simulink. IEE International Conference on Circuit, Power and Computing Technologies, 814–821.
Sahu, P., Verma, D., & Nema, S. (2016). Physical Design and Modelling of Boost Converter systems. 2016 International Conference on Electrical Power and Energy Systems (ICEPES), 10–15. DOI: https://doi.org/10.1109/ICEPES.2016.7915898
Tey, K. S., & Mekhilef, S. (2014). Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level. Solar Energy, 101, 333–342. https://doi. org/10.1016/j.solener.2014.01.003 DOI: https://doi.org/10.1016/j.solener.2014.01.003