SYNTHESIS, CHARACTERISATION AND FLUORESCENCE SENSING PROPERTIES OF TETRADENTATE N,N’–BIS(SALICYLIDENE)–1,3-PROPANEDIAMINE FOR METAL IONS DETECTION: PRELIMINARY STUDY
DOI:
https://doi.org/10.46754/umtjur.v3i3.229Keywords:
Tetradentate Schiff base, metal complexes, fluorescence sensingAbstract
Tetradentate Schiff base ligand namely N,N’–bis(salicylidene)-1,3-propanediamine, containing -ONNO- donor set was successfully synthesised between salicylaldehyde and 1,3-diaminopropane using condensation reaction. The structure of the synthesised ligand was unambiguously determined by Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy and Thermogravimetric Analysis (TGA). The spectroscopic studies suggest that the central azomethine (C=N) group of tetradentate ligand can be assigned at vibration peak 1632 cm-1 and the chemical shift observed for OH proton appeared at very downfield. TGA curve shows around 80% weight loss occurred when the sample was heated at room-temperature up to 850 ºC. Initial data show the ligand enhanced fluorescence spot upon increasing the concentration of Zn2+ and Pb2+. The response of ligand with Zn2+ and Pb2+ also inhibits the C=N bond isomerisation and subsequently increased the intensity of fluorescence efficiency. Thus, the proposed tetradentate Schiff base ligand used as reagent sensing potentially has good capability in sensing application for metal ions detection.
References
Ackland, M. L., and Michalzyk, A. (2006). Zinc deficiency and its inherited disorders. Genes & Nutrition, 1(1), 41-50. doi:10.1007/ BF02829935 DOI: https://doi.org/10.1007/BF02829935
Andiappan, K., Sanmugam, A., Deivanayagam, E., Karuppasamy, K., Kim, H-S. & Vikraman, D. (2018) In vitro cytotoxicity activity of novel Schiff base ligand– lanthanide complexes. Nature Research Journal. doi:10.1038/s41598-018-21366-1 DOI: https://doi.org/10.1038/s41598-018-21366-1
Asadi, M., Sepehrpour, H. & Mohammadi, K. (2011). Tetradentate Schiff base ligands of 3,4-diaminobenzophenone: Synthesis, characterization and thermodynamics of complex formation with Ni(II), Cu(II) and Zn(II) metal ions. Journal of the Serbian Chemical Society, 76(1), 63-74. doi: 10.2298/JSC100104004A DOI: https://doi.org/10.2298/JSC100104004A
Assi, M. A., Hezmee, M. N. M., Haron, A. W., Sabri, M. Y. M. & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9(6): 660- 671. doi:10.14202/vetworld.2016.660-671 DOI: https://doi.org/10.14202/vetworld.2016.660-671
Fraser, C. & Bosnich, B. (1994). Bimetallic reactivity. Investigation of metal-metal interaction in complexes of a chiral macrocyclic binucleating ligand bearing 6-and 4-coordinate sites. Inorganic Chemistry, 33, 338-346. doi:10.1021/ ic00080a024 DOI: https://doi.org/10.1021/ic00080a024
Guo, Z., Wang, X., Wei, P. Gao, Y. & Li, Q. (2019). Highly selective fluorescent probe for the detection of copper(II) and its application in live cell imaging. Journal of Analytical Methods in Chemistry. doi:10.1155/2019/8130767 DOI: https://doi.org/10.1155/2019/8130767
Hens, A., Maity, A., & Rajak, K. K. (2014). N,N coordinating Schiff base ligand acting as a fluorescence sensor for zinc(II) and colorimetric sensor for copper(II), and zinc(II) in mixed aqueous media. Inorganica Chimica, 423(2014): 408-420. doi:10.1016/j.ica.2014.08.024 DOI: https://doi.org/10.1016/j.ica.2014.08.024
Jarup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1):167-182. doi:10.1093/bmb/ldg032. DOI: https://doi.org/10.1093/bmb/ldg032
Joshi, K. R., Rojivadiya, A. J., & Pandya, J. H. (2014). Synthesis and spectroscopic and antimicrobial studies of Schiff base metal complexes derived from 2-hydroxy- 3 - m e t h o x y - 5 - n i t r o b e n z a l d e h y d e . International Journal of Inorganic Chemistry. doi:10.1155/2014/817412 DOI: https://doi.org/10.1155/2014/817412
Kang, H., Lin, L., Rong, M., & Chen, X. (2014). A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions. Talanta, 129(2014): 296–302. doi:10.1016/j.talanta.2014.05.054 DOI: https://doi.org/10.1016/j.talanta.2014.05.054
Popa, A., Plesu, N., Sasca, V., Kis, E. E. and Neducin, R. M. (2006). Physicochemical Features of Polyaniline Supported Heteropolyacids. Journal of Optoelectronics and Advance Materials. 8, 1944-1950. doi:10.1.1.524.7616
Soliman, A. A., Ali, S. A., Khalil, M. M. H. & Ramadan, R. M. (2000). Thermal studies of chromium, molybdenum and ruthenium complexes of chloranilic acid. Thermochimica Acta, 359(1): 37-42. doi. org/10.1016/S0040-6031(00)00486-X DOI: https://doi.org/10.1016/S0040-6031(00)00486-X
Sun, J., Yu, T., Yu, H., Sun, M. Li, H., Zhang, Z., Jiang, H. & Wang, S. (2014). Highly efficient turn-on fluorescence detection of zinc(II) based on multi-ligand metal chelation. Journal of Analytical Methods, 6(17): 6768- 6773. doi.org/10.1039/C4AY00844H DOI: https://doi.org/10.1039/C4AY00844H
Wan, Q., Zhuo, J., Lin, C. & Yuan, Y. (2015). A simple and highly selective 2,2-diferrocenylpropane-based multi-channel ion pair receptor for Pb2+ and HSO4−. Dalton Transactions, 44, 5709- 5796. doi:10.1039/C4DT03862B DOI: https://doi.org/10.1039/C4DT03862B
Xavier, A., & Srividhya, N. (2014). Synthesis and study of Schiff base ligands. Journal of Applied Chemistry, 7(11): 6-15. doi:10.9790/5736-071110615 DOI: https://doi.org/10.9790/5736-071110615