DENSITY AND STRUCTURE OF LEAF TRICHOMES IN Capsicum annuum and Capsicum frutescens
DOI:
https://doi.org/10.46754/umtjur.v3i3.220Keywords:
Morphology, Solanaceae, chili pepperAbstract
Morphology and density of plant trichomes vary by species. Several studies on family Solanaceae have shown the diversity of trichomes among species and cultivated plants, but less research on density and morphology of trichomes in the genus Capsicum. The aim of this study is to determine the density and type of leaf trichomes from Capsicum annuum and C. frutescens. The structure of trichomes was observed under light microscope equipped with Dino Eye. The density of trichomes was recorded using stereo microscope as the number of trichomes per cm2 multiplying the total area of the leaf. Glandular and non-glandular trichomes were covered on abaxial and adaxial surfaces of both species. No significant difference was observed for trichome density between adaxial and abaxial leaf surfaces within species (C. annuum, t(8) = 1.37, p= 0.21, and C. frutescens, t(8) = -0.23, p= 0.82). However, mean trichome density on the abaxial surfacesof C. annuum was significantly lower than C. frutescens (F (3,16) = 3.79, p= 0.03). The density of glandular trichomes occurred on leaf midrib of C. frutescens (8.17 + 1.22 cm-2) was higher than C. annuum (4.20 + 0.42 cm-2; t(8) = -3.74, p= 0.02). This study provides basic knowledge of leaf trichomes structure and the density of cultivated chili plants in Malaysia.
References
Bickford, C. P. (2016). Ecophysiology of leaf trichomes. Functional Plant Biology, 43(9), 807-814. DOI: https://doi.org/10.1071/FP16095
Campos, M., Almeida, M., Rossi, M., Martinelli, A., Litholdo Junior, C., Figueira, A., Rampelotti-Ferreira, F., Vendramim, J., Benedito, V. & Peres, L. (2009). Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. Journal of Experimental Botany, 60, 4347-61. DOI: https://doi.org/10.1093/jxb/erp270
Champagne, A. & Boutry, M. (2016). Proteomics of terpenoid biosynthesis and secretion in trichomes of higher plant species. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864(8), 1039-1049. DOI: https://doi.org/10.1016/j.bbapap.2016.02.010
Chen, G., Klinkhamer, P. G. L., Escobar-Bravo, R. & Leiss, K. A. (2018). Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: Implications for thrips resistance. Plant Science, 276, 87-98. DOI: https://doi.org/10.1016/j.plantsci.2018.08.007
Dalin, P., Ågren, J., Björkman, C., Huttunen, P. & Kärkkäinen, K. (2008). Leaf trichome formation and plant resistance to herbivory. In Schaller A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht, The Netherlands. DOI: https://doi.org/10.1007/978-1-4020-8182-8_4
de Oliveira, J. R. F., de Resende, J. T. V., Maluf, W. R., Lucini, T., de Lima Filho, R. B., de Lima, I. P. & Nardi, C. (2018). Trichomes and allelochemicals in tomato genotypes have antagonistic effects upon behavior and biology of Tetranychus urticae. Frontiers in Plant Science, 9(1132). DOI: https://doi.org/10.3389/fpls.2018.01132
Escobar-Bravo, R., Klinkhamer, P. G. & Leiss, K. A. (2017). Induction of jasmonic acid-associated defenses by thrips alters host suitability for conspecifics and correlates with increased trichome densities in tomato. Plant and Cell Physiology, 58(3), 622-634. DOI: https://doi.org/10.1093/pcp/pcx014
Holmes, M. G. & Keiller, D. R. (2002). Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: A comparison of a range of species. Plant, Cell and Environment, 25(1), 85-93. DOI: https://doi.org/10.1046/j.1365-3040.2002.00779.x
Kariyat, R. R., Hardison, S. B., Ryan, A. B., Stephenson, A. G., De Moraes, C. M. & Mescher, M. C. (2018). Leaf trichomes affect caterpillar feeding in an instar- specific manner. Communicative and Integrative Biology, 11(3), 1-6. DOI: https://doi.org/10.1080/19420889.2018.1486653
Kariyat, R. R., Smith, J. D., Stephenson, A.G., De Moraes, C. M. & Mescher, M. C. (2017). Non-glandular trichomes of solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proceedings of the Royal Society B: Biological Sciences, 284(1849), 20162323. DOI: https://doi.org/10.1098/rspb.2016.2323
Kim, H.-J., Seo, E., Kim, J.-H., Cheong, H.-J., Kang, B.-C. & Choi, D. (2012). Morphological classification of trichomes associated with possible biotic stress resistance in the genus Capsicum. The Plant Pathology Journal, 28(1), 107-113. DOI: https://doi.org/10.5423/PPJ.NT.12.2011.0245
Konrad, W., Burkhardt, J., Ebner, M. & Roth Nebelsick, A. (2015). Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology, 8(3), 480-492. DOI: https://doi.org/10.1002/eco.1518
Latha, S. & Hunumanthraya, L. (2018). Screening of chilli genotypes against chilli thrips (Scirtothrips dorsalis hood) and yellow mite [Polyphagotarsonemus latus (banks)]. Journal of Entomology and Zoology Studies, 6, 2739-2744.
Murungi, L.K., Kirwa, H., Salifu, D. & Torto, B. (2016). Opposing roles of foliar and glandular trichome volatile components in cultivated nightshade interaction with a specialist herbivore. PLOS ONE, 11(8), e0160383. DOI: https://doi.org/10.1371/journal.pone.0160383
Pshenichnikova, T., Doroshkov, A., Osipova, S., Permyakov, A., Permyakova, M., Efimov, V. & Afonnikov, D. (2018). Quantitative characteristics of pubescence in wheat (Triticum aestivum l.) are associated with photosynthetic parameters under conditions of normal and limited water supply. Planta, 249. DOI: https://doi.org/10.1007/s00425-018-3049-9
Saad, K. A., Mohamad Roff, M., Hallett, R. H. & Abd Ghani, I. B. (2019). Effects of cucumber mosaic virus infected chilli plants on non vector Bemisia tabaci (hemiptera: Aleyrodidae). Insect Science, 26(1), 76-85. DOI: https://doi.org/10.1111/1744-7917.12488
Shepherd, R. W., Bass, W. T., Houtz, R. L. & Wagner, G. J. (2005). Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. Plant Cell, 17(6), 1851-1861. DOI: https://doi.org/10.1105/tpc.105.031559
Talip N., M. R., A. R. & Muhammad Amirul Aiman, A. J. (2019). Anatomi dan mikroskopik tumbuhan. Universiti Kebangsaan Malaysia, Bangi, Selangor.
Tattini, M., Matteini, P., Saracini, E., Traversi, M., Giordano, C. & Agati, G. (2007). Morphology and biochemistry of non-glandular trichomes in Cistus salvifolius l. leaves growing in extreme habitats of the mediterranean basin. Plant Biology (Stuttgart, Germany), 9, 411-9. DOI: https://doi.org/10.1055/s-2006-924662
Tian, D., Tooker, J., Peiffer, M., Chung, S. H. & Felton, G. W. (2012). Role of trichomes in defense against herbivores: Comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta, 236(4), 1053-1066. DOI: https://doi.org/10.1007/s00425-012-1651-9
Tingey, W. M. (1991) Potato glandular trichomes: Defensive activity against insect attack. In Hedin, P. A. (ed.) Naturally Occuring Pest Bioregulators. American Chemical Society, Washington. DOI: https://doi.org/10.1021/bk-1991-0449.ch009
Wilkens, R. T., Shea, G. O., Halbreich, S. & Stamp, N. E. (1996). Resource availability and the trichome defenses of tomato plants. Oecologia, 106(2), 181-191. DOI: https://doi.org/10.1007/BF00328597
Yan, A., Pan, J., An, L., Gan, Y. & Feng, H. (2012). The responses of trichome mutants to enhanced ultraviolet-b radiation in Arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology, 113, 29-35. DOI: https://doi.org/10.1016/j.jphotobiol.2012.04.011