POPULATION GENETICS OF LONGTAIL TUNA (Thunnus tonggol) (BLEEKER, 1851) FROM EAST MALAYSIA BASED ON MITOCHONDRIAL DNA D-LOOP MARKER

Authors

  • NURUL AZLIANA MOHD YASIN Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu
  • NOORHANI SYAHIDA KASIM Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu
  • TUN NURUL AIMI MAT JAAFAR Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu
  • RUMEAIDA MAT PIAH Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu
  • WAHIDAH MOHD ARSHAAD Marine Fishery Resources Development and Management Department (MFRDMD)
  • SITI AZIZAH MOHD NOR Institute Marine Biotechnology (IMB), Universiti Malaysia Terengganu
  • AHASAN HABIB Department of Fisheries and Marine Science, Noakhli Science and Technology University
  • MIN PAU TAN Institut Biodiversiti Tropika dan Pembangunan Lestari (BIO-D Tropika), Universiti Malaysia Terengganu

DOI:

https://doi.org/10.46754/umtjur.v2i2.146

Keywords:

Thunnus tonggol, mitochondrial DNA D-loop, population structure, genetic diversity, fisheries management

Abstract

Present study investigates the genetic diversity and genetic distribution of the longtail tuna Thunnus tonggol collected from east Malaysia (Borneo states of Sabah and Sarawak) based on mitochondrial DNA D-loop sequence analysis. 58 fish samples were obtained, specifically from Kota Kinabalu, KK (n = 22), Miri, MR (n=20) and Bintulu, BT (n = 17). DNA template was isolated using the salt extraction method. Final length of 404 base pair (bp) D-loop sequences revealed 52 haplotypes that comprise of 77 variable sites (38 of parsimony informative and 39 singleton). A total of 20 haplotypes were found in KK, 19 haplotypes in MR and 16 haplotypes in BT. Molecular diversity indices revealed high haplotype diversity and low nucleotide diversity in all populations; KK (h = 0.9913 ± 0.0165, π = 0.00239 ± 0.0127), MR (h = 0.9942 ± 0.0193, π = 0.0226 ± 0.0121) and BT (h = 0.9926 ± 0.0230, π = 0.0196 ± 0.0171). Population comparison pairwise FST show that KK and BT were significantly genetically differentiated. The result from this study will be beneficial for fisheries management and also to provide information on the population genetics of T. tonggol in East Malaysian waters.

References

Akbar, N., Irfan, M., & Aris, M. (2018). Population Genetics and Phylogeography of Bigeye Tuna in Moluccas Seas, Indonesia. Indonesian Journal of Marine Sciences Ilmu Kelautan, 23(4), 145-155.

Appleyard, S. A., Grewe, P. M., Innes, B. H., & Ward, R. D. (2001). Population structure of yellowfin tuna (Thunnus albacares) in the western Pacific Ocean, inferred from microsatellite loci. Marine Biology, 139, 383–393.

Chiang, H. C., Hsu, C. C., Lin, H. D., Mac, G. C., Chiang, T. Y., & Yang, H. Y. (2006). Population structure of bigeye tuna (Thunnus obesus) in the South China Sea, Philippine Sea and western Pacific Ocean inferred from mitochondrial DNA. Fisheries Research, 79(1-2), 219–225.

Durand, J. D., Collet, A., Chow, S., Guinand, B., & Borsa, P. (2005). Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Marine Biology, 147(2), 313–322.

Ely, B., Vinas, J., Bremer, J. R. A., Black,D., Lucas, L., Covello, K., Labrie, A.V., & Thelen, E. (2005). Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evolution Biology, 5(1), 19.

Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 10(3), 564-567.

Griffiths, S. P., Fry, G. C., Manson, F. J., & Lou, D. C. (2009). Age and growth of longtail tuna (Thunnus tonggol) in tropical and temperate waters of the central Indo-Pacific. ICES Journal of Marine Science, 67, 125–134. Griffiths, S, P. (2010). Stock assessment and efficacy of size limits on longtail tuna (Thunnus tonggol) caught in Australian waters. Fisheries Research, 102(3), 248-257.

Guo, S. S., Zhang, G. R., Guo, X. Z., Wei, K. J., Yang, R. B., & Wei, Q. W. (2014). Genetic diversity and population structure of Schizopygopsis younghusbandi Regan in the Yarlung Tsangpo River inferred from mitochondrial DNA sequence analysis. Biochemical Systematics and Ecology, 57,

-151.

Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N., & Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology Letters, 11(6), 609-623.

Kumar, G., & Kocour, M. (2015). Population genetic structure of tunas inferred from molecular markers: a review. Reviews in Fisheries Science & Aquaculture, 23, 72-89.

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platform. Molecular Biology and Evolution, 35, 1547-1549.

Kunal, S. P. Kumar, G., Menezes, M. R., & Meena, R. M. (2014). Genetic homogeneity in longtail tuna Thunnus tonggol (Bleeker, 1851) from the northwest coast of India inferred from direct sequencing analysis of the mitochondrial DNA D-loop region. Marine Biology Research, 10(7), 738-743.

Lalitha, R., & Chandavar, V. R. (2018). Intraspecific variations in Cyt b and D-loop sequences of Testudine species, Lissenys puncata from south Karnataka. Journal of Advanced Research, 9, 87-95.

Martinez, P., Gonzales, G. E., Castilho, R., & Zardoya, R. (2006). Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Molecular phylogenetics and evolution, 39(2), 404–416.

Saccone, C., Attimonelli, M., & Sabisa, E., (1987). Structural elements highly preserved during the evolution of the D-loop containing region in vertebrate mitochondrial DNA. Journal of Molecular

Evolution, 26, 205-211.

Shui, B. N., Han, Z. Q., Gao, T. X., & Miao, Z. Q. (2008). Genetic structure of Japanese Spanish mackerel (Scomberomorus niphonius) in the East China Sea and Yellow Sea inferred from AFLP data.

African Journal of Biotechnology, 7(21), 3860-3865.

Qi, D. L., Guo, S. C., Zhao, X. Q., Yang, J., & Tang, W. J. (2007). Genetic diversity and historical population structure of Schizopygopsis pylzovi (Teleostei: Cyprinidae) in the Qinghai-Tibetan Plateau. Freshwater Biology, 52(6), 1090-1104.

Wild, A. (1994). A review of the biology and fisheries for yellowfin tuna, Thunnus albacares in the eastern Pacific Ocean. FAO Fisheries Technical Paper, 336, 52-107.

Willette, D. A., Santos, M. D., & Leadbitter D. (2016). Longtail tuna Thunnus tonggol (Bleeker, 1851) shows genetic partitioning aross, but not within, basins of the IndoPacific based on mitochondrial DNA. Journal of Applied Ichthyology, 32, 318-323.

Yusron, E., (2005). Utilization of genetic diversity in marine biological resource management. Oceana Journal, 30(2), 29–34.

Zhang, J. J., Duan, J. R., zhou, Y. F., Peng, J. Y., & Fang, D. A. (2016). Genetic diversity of mitochondrial control region (D-loop) polymorphisms in Coilia ectenes taihuensis inhabiting Taihu Lake, China. Genetics

Additional Files

Published

2020-04-03

How to Cite

MOHD YASIN, N. A. ., KASIM, N. S. ., MAT JAAFAR, T. N. A. ., MAT PIAH, R. ., MOHD ARSHAAD, W. ., MOHD NOR, S. A. ., HABIB, A. ., & TAN , M. P. (2020). POPULATION GENETICS OF LONGTAIL TUNA (Thunnus tonggol) (BLEEKER, 1851) FROM EAST MALAYSIA BASED ON MITOCHONDRIAL DNA D-LOOP MARKER. Universiti Malaysia Terengganu Journal of Undergraduate Research, 2(2), 49–56. https://doi.org/10.46754/umtjur.v2i2.146