BIOCHAR IN CONCRETE: A PATHWAY TO ECO-FRIENDLY BUILDING PRACTICES

Authors

  • ALIREZA SHAFIZADEH Department of Agricultural Machinery, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Keywords:

Biochar, Concrete production, Carbon sequestration, Sustainable construction, CO2 emissions reduction, Cement replacement

Abstract

Global warming, driven by rising atmospheric greenhouse gas levels, necessitates a paradigm shift in the construction industry, a major contributor to CO2 emissions. Concrete, a cornerstone of modern construction, is responsible for a significant portion of global CO2 emissions due to the high carbon footprint of cement, a key ingredient. Biochar, a charcoal-like material produced from pyrolyzed organic waste, offers a multifaceted approach to mitigating the environmental impact of concrete by reducing CO2 emissions during production, sequestering carbon within the concrete structure, and potentially enhancing concrete properties. This paper explores the definition and production methodologies of biochar, its physical and chemical properties, and the effects of incorporating biochar into concrete mixes on various concrete properties, including rheology, hydration, setting time, mechanical strength, shrinkage, and durability. Additionally, it discusses the substantial environmental benefits of using biochar in concrete production, particularly its role in carbon sequestration. The findings suggest that biochar holds significant potential for the construction industry to adopt more sustainable practices.

References

Andrew, R.M., 2018. Global CO2 emissions from cement production. Earth Syst. Sci. Data 10, 195–217. https://doi.org/10.5194/essd-10-195-2018

Arif, M., Jan, T., Riaz, M., Fahad, S., Adnan, M., Amanullah, Ali, K., Mian, I.A., Khan, B., Rasul, F., 2020. Biochar; a Remedy for Climate Change, in: Environment, Climate, Plant and Vegetation Growth. Springer International Publishing, Cham, pp. 151–171. https://doi.org/10.1007/978-3-030-49732-3_8

Asadi Zeidabadi, Z., Bakhtiari, S., Abbaslou, H., Ghanizadeh, A.R., 2018. Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr. Build. Mater. 181, 301–308. https://doi.org/10.1016/j.conbuildmat.2018.05.271

Ashley, E., Lemay, L., 2008. Concrete’s Contribution to Sustainable Development. J. Green Build. 3, 37–49. https://doi.org/10.3992/jgb.3.4.37

Atkinson, H., 2014. Planetary challenges: the agenda laid bare, in: The Challenge of Sustainability. Policy Press, pp. 11–42. https://doi.org/10.51952/9781447306474.ch001

Bopp, C., Christl, I., Schulin, R., Evangelou, M.W.H., 2016. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils. Environ. Sci. Pollut. Res. 23, 17449–17458. https://doi.org/10.1007/s11356-016-6935-3

Andrew, R.M., 2018. Global CO2 emissions from cement production. Earth Syst. Sci. Data 10, 195–217. https://doi.org/10.5194/essd-10-195-2018

Arif, M., Jan, T., Riaz, M., Fahad, S., Adnan, M., Amanullah, Ali, K., Mian, I.A., Khan, B., Rasul, F., 2020. Biochar; a Remedy for Climate Change, in: Environment, Climate, Plant and Vegetation Growth. Springer International Publishing, Cham, pp. 151–171. https://doi.org/10.1007/978-3-030-49732-3_8

Asadi Zeidabadi, Z., Bakhtiari, S., Abbaslou, H., Ghanizadeh, A.R., 2018. Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr. Build. Mater. 181, 301–308. https://doi.org/10.1016/j.conbuildmat.2018.05.271

Ashley, E., Lemay, L., 2008. Concrete’s Contribution to Sustainable Development. J. Green Build. 3, 37–49. https://doi.org/10.3992/jgb.3.4.37

Atkinson, H., 2014. Planetary challenges: the agenda laid bare, in: The Challenge of Sustainability. Policy Press, pp. 11–42. https://doi.org/10.51952/9781447306474.ch001

Bopp, C., Christl, I., Schulin, R., Evangelou, M.W.H., 2016. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils. Environ. Sci. Pollut. Res. 23, 17449–17458. https://doi.org/10.1007/s11356-016-6935-3

Buss, W., Jansson, S., Wurzer, C., Mašek, O., 2019. Synergies between BECCS and Biochar—Maximizing Carbon Sequestration Potential by Recycling Wood Ash. ACS Sustain. Chem. Eng. 7, 4204–4209. https://doi.org/10.1021/acssuschemeng.8b05871

Danish, A., Ali Mosaberpanah, M., Usama Salim, M., Ahmad, N., Ahmad, F., Ahmad, A., 2021. Reusing biochar as a filler or cement replacement material in cementitious composites: A review. Constr. Build. Mater. 300, 124295. https://doi.org/10.1016/j.conbuildmat.2021.124295

Emenike, E.C., Iwuozor, K.O., Ighalo, J.O., Bamigbola, J.O., Omonayin, E.O., Ojo, H.T., Adeleke, J., Adeniyi, A.G., 2024. Advancing the circular economy through the thermochemical conversion of waste to biochar: a review on sawdust waste-derived fuel. Biofuels 15, 433–447. https://doi.org/10.1080/17597269.2023.2255007

Florides, G.A., Christodoulides, P., 2009. Global warming and carbon dioxide through sciences. Environ. Int. 35, 390–401. https://doi.org/10.1016/j.envint.2008.07.007

Ghani, W.A.W.A.K., Mohd, A., da Silva, G., Bachmann, R.T., Taufiq-Yap, Y.H., Rashid, U., Al-Muhtaseb, A.H., 2013. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Ind. Crops Prod. 44, 18–24. https://doi.org/10.1016/j.indcrop.2012.10.017

Giergiczny, Z., 2019. Fly ash and slag. Cem. Concr. Res. 124, 105826. https://doi.org/10.1016/j.cemconres.2019.105826

Giri, B.S., Goswami, M., Kumar, P., Yadav, R., Sharma, N., Sonwani, R.K., Yadav, S., Singh, R.P., Rene, E.R., Chaturvedi, P., Singh, R.S., 2020. Adsorption of Patent Blue V from Textile Industry Wastewater Using Sterculia alata Fruit Shell Biochar: Evaluation of Efficiency and Mechanisms. Water 12, 2017. https://doi.org/10.3390/w12072017

Glenk, G., Kelnhofer, A., Meier, R., Reichelstein, S., 2023. Cost-Efficient Decarbonization of Portland Cement Production. https://doi.org/10.21203/rs.3.rs-3438395/v1

Guo, C., Zhu, J., Zhou, W., Sun, Z., Chen, W., 2012. Effect of phosphorus and fluorine on hydration process of tricalcium silicate and tricalcium aluminate. J. Wuhan Univ. Technol. Sci. Ed. 27, 333–336. https://doi.org/10.1007/s11595-012-0462-y

Guo, J., Wang, L., Fan, K., Yang, B., 2020. An efficient model for predicting setting time of cement based on broad learning system. Appl. Soft Comput. 96, 106698. https://doi.org/10.1016/j.asoc.2020.106698

Gupta, S., Kashani, A., 2021. Utilization of biochar from unwashed peanut shell in cementitious building materials – Effect on early age properties and environmental benefits. Fuel Process. Technol. 218, 106841. https://doi.org/10.1016/j.fuproc.2021.106841

Gupta, S., Kashani, A., Mahmood, A.H., Han, T., 2021. Carbon sequestration in cementitious composites using biochar and fly ash – Effect on mechanical and durability properties. Constr. Build. Mater. 291, 123363. https://doi.org/10.1016/j.conbuildmat.2021.123363

Gupta, S., Krishnan, P., Kashani, A., Kua, H.W., 2020a. Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Constr. Build. Mater. 262, 120688. https://doi.org/10.1016/j.conbuildmat.2020.120688

Gupta, S., Kua, H.W., 2019. Carbonaceous micro-filler for cement: Effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar. Sci. Total Environ. 662, 952–962. https://doi.org/10.1016/j.scitotenv.2019.01.269

Gupta, S., Kua, H.W., 2018. Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Constr. Build. Mater. 159, 107–125. https://doi.org/10.1016/j.conbuildmat.2017.10.095

Gupta, S., Kua, H.W., Low, C.Y., 2018. Use of biochar as carbon sequestering additive in cement mortar. Cem. Concr. Compos. 87, 110–129. https://doi.org/10.1016/j.cemconcomp.2017.12.009

Gupta, S., Kua, H.W., Pang, S.D., 2020b. Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Constr. Build. Mater. 234, 117338. https://doi.org/10.1016/j.conbuildmat.2019.117338

Gupta, S., Tulliani, J.-M., Kua, H.W., 2022. Carbonaceous admixtures in cementitious building materials: Effect of particle size blending on rheology, packing, early age properties and processing energy demand. Sci. Total Environ. 807, 150884. https://doi.org/10.1016/j.scitotenv.2021.150884

Habert, G., Miller, S.A., John, V.M., Provis, J.L., Favier, A., Horvath, A., Scrivener, K.L., 2020. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 1, 559–573. https://doi.org/10.1038/s43017-020-0093-3

Hasanbeigi, A., Price, L., Lin, E., 2012. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renew. Sustain. Energy Rev. 16, 6220–6238. https://doi.org/10.1016/j.rser.2012.07.019

He, P., Liu, Y., Shao, L., Zhang, H., Lü, F., 2018. Particle size dependence of the physicochemical properties of biochar. Chemosphere 212, 385–392. https://doi.org/10.1016/j.chemosphere.2018.08.106

Ho, H.-J., Iizuka, A., Shibata, E., 2021. Chemical recycling and use of various types of concrete waste: A review. J. Clean. Prod. 284, 124785. https://doi.org/10.1016/j.jclepro.2020.124785

Hu, L., He, Z., Zhang, S., 2020. Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement. J. Clean. Prod. 264, 121744. https://doi.org/10.1016/j.jclepro.2020.121744

Ighalo, J.O., Iwuchukwu, F.U., Eyankware, O.E., Iwuozor, K.O., Olotu, K., Bright, O.C., Igwegbe, C.A., 2022. Flash pyrolysis of biomass: a review of recent advances. Clean Technol. Environ. Policy 24, 2349–2363. https://doi.org/10.1007/s10098-022-02339-5

Jia, Y., Li, H., He, X., Li, P., Wang, Z., 2023. Effect of biochar from municipal solid waste on mechanical and freeze–thaw properties of concrete. Constr. Build. Mater. 368, 130374. https://doi.org/10.1016/j.conbuildmat.2023.130374

Juenger, M.C.G., Siddique, R., 2015. Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res. 78, 71–80. https://doi.org/10.1016/j.cemconres.2015.03.018

Kan, T., Strezov, V., Evans, T.J., 2016. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57, 1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

Karstensen, K.H., Engelsen, C.J., Ng, S., Saha, P.K., Malmedal, M.N., 2016. Cement Manufacturing and Air Quality. pp. 683–705. https://doi.org/10.1016/bs.coac.2016.02.015

Kharissova, A.B., Kharissova, O. V., Kharisov, B.I., Méndez, Y.P., 2024. Carbon negative footprint materials: A review. Nano-Structures & Nano-Objects 37, 101100. https://doi.org/10.1016/j.nanoso.2024.101100

Leng, L., Huang, H., Li, H., Li, J., Zhou, W., 2019. Biochar stability assessment methods: A review. Sci. Total Environ. 647, 210–222. https://doi.org/10.1016/j.scitotenv.2018.07.402

Leng, L., Xiong, Q., Yang, L., Li, Hui, Zhou, Y., Zhang, W., Jiang, S., Li, Hailong, Huang, H., 2021. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 763, 144204. https://doi.org/10.1016/j.scitotenv.2020.144204

Li, C., Li, J., Ren, Q., Zheng, Q., Jiang, Z., 2023. Durability of concrete coupled with life cycle assessment: Review and perspective. Cem. Concr. Compos. 139, 105041. https://doi.org/10.1016/j.cemconcomp.2023.105041

Li, Z., Xue, W., Zhou, W., 2023. Mechanical Properties of Concrete with Different Carya Cathayensis Peel Biochar Additions. Sustainability 15, 4874. https://doi.org/10.3390/su15064874

Libre, N.A., Khoshnazar, R., Shekarchi, M., 2010. Relationship between fluidity and stability of self-consolidating mortar incorporating chemical and mineral admixtures. Constr. Build. Mater. 24, 1262–1271. https://doi.org/10.1016/j.conbuildmat.2009.12.009

Lothenbach, B., Scrivener, K., Hooton, R.D., 2011. Supplementary cementitious materials. Cem. Concr. Res. 41, 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001

Lu, W., Yuan, H., 2013. Investigating waste reduction potential in the upstream processes of offshore prefabrication construction. Renew. Sustain. Energy Rev. 28, 804–811. https://doi.org/10.1016/j.rser.2013.08.048

Maljaee, H., Madadi, R., Paiva, H., Tarelho, L., Ferreira, V.M., 2021a. Incorporation of biochar in cementitious materials: A roadmap of biochar selection. Constr. Build. Mater. 283, 122757. https://doi.org/10.1016/j.conbuildmat.2021.122757

Maljaee, H., Paiva, H., Madadi, R., Tarelho, L.A.C., Morais, M., Ferreira, V.M., 2021b. Effect of cement partial substitution by waste-based biochar in mortars properties. Constr. Build. Mater. 301, 124074. https://doi.org/10.1016/j.conbuildmat.2021.124074

Mensah, R., Shanmugam, V., Narayanan, S., Razavi, N., Ulfberg, A., Blanksvärd, T., Sayahi, F., Simonsson, P., Reinke, B., Försth, M., Sas, G., Sas, D., Das, O., 2021. Biochar-Added Cementitious Materials—A Review on Mechanical, Thermal, and Environmental Properties. Sustainability 13, 9336. https://doi.org/10.3390/su13169336

Moeini, M.A., Hosseinpoor, M., Yahia, A., 2022. Yield stress of fine cement-based mortars: Challenges and potentials with rotational and compressional testing methods. Constr. Build. Mater. 314, 125691. https://doi.org/10.1016/j.conbuildmat.2021.125691

Molino, A., Chianese, S., Musmarra, D., 2016. Biomass gasification technology: The state of the art overview. J. Energy Chem. 25, 10–25. https://doi.org/https://doi.org/10.1016/j.jechem.2015.11.005

Mostert, C., Bock, J., Sameer, H., Bringezu, S., 2022. Environmental Assessment of Carbon Concrete Based on Life-Cycle Wide Climate, Material, Energy and Water Footprints. Materials (Basel). 15, 4855. https://doi.org/10.3390/ma15144855

Muthukrishnan, S., Gupta, S., Kua, H.W., 2019. Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theor. Appl. Fract. Mech. 104, 102376. https://doi.org/10.1016/j.tafmec.2019.102376

Muzyka, R., Misztal, E., Hrabak, J., Banks, S.W., Sajdak, M., 2023. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy 263, 126128. https://doi.org/10.1016/j.energy.2022.126128

Naqi, A., Jang, J.G., 2019. Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review. Sustainability 11, 537. https://doi.org/10.3390/su11020537

Oliveira, I., Blöhse, D., Ramke, H.-G., 2013. Hydrothermal carbonization of agricultural residues. Bioresour. Technol. 142, 138–146. https://doi.org/10.1016/j.biortech.2013.04.125

Pandey, D.S., Katsaros, G., Lindfors, C., Leahy, J.J., Tassou, S.A., 2019. Fast Pyrolysis of Poultry Litter in a Bubbling Fluidised Bed Reactor: Energy and Nutrient Recovery. Sustainability 11, 2533. https://doi.org/10.3390/su11092533

Pastor-Villegas, J., Meneses Rodríguez, J.M., Pastor-Valle, J.F., Rouquerol, J., Denoyel, R., García García, M., 2010. Adsorption–desorption of water vapour on chars prepared from commercial wood charcoals, in relation to their chemical composition, surface chemistry and pore structure. J. Anal. Appl. Pyrolysis 88, 124–133. https://doi.org/10.1016/j.jaap.2010.03.005

Pavkov, I., Radojčin, M., Stamenković, Z., Bikić, S., Tomić, M., Bukurov, M., Despotović, B., 2022. Hydrothermal Carbonization of Agricultural Biomass: Characterization of Hydrochar for Energy Production. Solid Fuel Chem. 56, 225–235. https://doi.org/10.3103/S0361521922030077

Petit, J.-Y., Khayat, K.H., Wirquin, E., 2009. Coupled effect of time and temperature on variations of plastic viscosity of highly flowable mortar. Cem. Concr. Res. 39, 165–170. https://doi.org/10.1016/j.cemconres.2008.12.007

Pravina Kamini G., Tee, K.F., Gimbun, J., Chin, S.C., 2023. Biochar in cementitious material—A review on physical, chemical, mechanical, and durability properties. AIMS Mater. Sci. 10, 405–425. https://doi.org/10.3934/matersci.2023022

Qin, Y., Pang, X., Tan, K., Bao, T., 2021. Evaluation of pervious concrete performance with pulverized biochar as cement replacement. Cem. Concr. Compos. 119, 104022. https://doi.org/10.1016/j.cemconcomp.2021.104022

Qing, L., Zhang, H., Zhang, Z., 2023. Effect of biochar on compressive strength and fracture performance of concrete. J. Build. Eng. 78, 107587. https://doi.org/10.1016/j.jobe.2023.107587

Qu, Z., Liu, Z., Si, R., Zhang, Y., 2022. Effect of Various Fly Ash and Ground Granulated Blast Furnace Slag Content on Concrete Properties: Experiments and Modelling. Materials (Basel). 15, 3016. https://doi.org/10.3390/ma15093016

Rubio-Hernández, F.J., Adarve-Castro, A., Velázquez-Navarro, J.F., Páez-Flor, N.M., Delgado-García, R., 2020. Influence of water/cement ratio, and type and concentration of chemical additives on the static and dynamic yield stresses of Portland cement paste. Constr. Build. Mater. 235, 117744. https://doi.org/10.1016/j.conbuildmat.2019.117744

Senadheera, S.S., Gupta, S., Kua, H.W., Hou, D., Kim, S., Tsang, D.C.W., Ok, Y.S., 2023. Application of biochar in concrete – A review. Cem. Concr. Compos. 143, 105204. https://doi.org/10.1016/j.cemconcomp.2023.105204

Sikarwar, V.S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M.Z., Shah, N., Anthony, E.J., Fennell, P.S., 2016. An overview of advances in biomass gasification. Energy Environ. Sci. 9, 2939–2977. https://doi.org/10.1039/c6ee00935b

Sirico, A., Belletti, B., Bernardi, P., Malcevschi, A., Pagliari, F., Fornoni, P., Moretti, E., 2022. Effects of biochar addition on long-term behavior of concrete. Theor. Appl. Fract. Mech. 122, 103626. https://doi.org/10.1016/j.tafmec.2022.103626

Sirico, A., Bernardi, P., Sciancalepore, C., Vecchi, F., Malcevschi, A., Belletti, B., Milanese, D., 2021. Biochar from wood waste as additive for structural concrete. Constr. Build. Mater. 303, 124500. https://doi.org/10.1016/j.conbuildmat.2021.124500

Tan, X.-F., Zhu, S.-S., Wang, R.-P., Chen, Y.-D., Show, P.-L., Zhang, F.-F., Ho, S.-H., 2021. Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups. Chinese Chem. Lett. 32, 2939–2946. https://doi.org/10.1016/j.cclet.2021.04.059

Tayeh, B.A., Alyousef, R., Alabduljabbar, H., Alaskar, A., 2021. Recycling of rice husk waste for a sustainable concrete: A critical review. J. Clean. Prod. 312, 127734. https://doi.org/10.1016/j.jclepro.2021.127734

Ting, L., Qiang, W., Shiyu, Z., 2019. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Technol. 345, 54–63. https://doi.org/10.1016/j.powtec.2018.12.094

Tomosawa, F., Noguchi, T., Tamura, M., 2005. The Way Concrete Recycling Should Be. J. Adv. Concr. Technol. 3, 3–16. https://doi.org/10.3151/jact.3.3

Waheed, Q.M.K., Nahil, M.A., Williams, P.T., 2013. Pyrolysis of waste biomass: investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition. J. Energy Inst. 86, 233–241. https://doi.org/10.1179/1743967113Z.00000000067

Wang, Q., Chu, D., Luo, C., Lai, Z., Shang, S., Rahimi, S., Mu, J., 2022. Transformation mechanism from cork into honeycomb–like biochar with rich hierarchical pore structure during slow pyrolysis. Ind. Crops Prod. 181, 114827. https://doi.org/10.1016/j.indcrop.2022.114827

Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G., 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 90, 223–247. https://doi.org/10.1016/j.rser.2018.03.071

Wei, D., Dave, R., Pfeffer, R., 2002. Mixing and Characterization of Nanosized Powders: An Assessment of Different Techniques. J. Nanoparticle Res. 4, 21–41. https://doi.org/10.1023/A:1020184524538

Yang, X., Wang, X.-Y., 2021. Hydration-strength-durability-workability of biochar-cement binary blends. J. Build. Eng. 42, 103064. https://doi.org/10.1016/j.jobe.2021.103064

Zaid, O., Alsharari, F., Ahmed, M., 2024. Utilization of engineered biochar as a binder in carbon negative cement-based composites: A review. Constr. Build. Mater. 417, 135246. https://doi.org/10.1016/j.conbuildmat.2024.135246

Zhou, Z., Wang, J., Tan, K., Chen, Y., 2023. Enhancing Biochar Impact on the Mechanical Properties of Cement-Based Mortar: An Optimization Study Using Response Surface Methodology for Particle Size and Content. Sustainability 15, 14787. https://doi.org/10.3390/su152014787

Downloads

Published

2024-07-31

How to Cite

ALIREZA SHAFIZADEH. (2024). BIOCHAR IN CONCRETE: A PATHWAY TO ECO-FRIENDLY BUILDING PRACTICES. Planetary Sustainability, 2(2). Retrieved from https://journal.umt.edu.my/index.php/planetsust/article/view/569