SUSTAINABLE ALTERNATIVE FEED FOR AQUACULTURE: STATE OF THE ART AND FUTURE PERSPECTIVE

Authors

  • SHARIF SHAHIN Universiti Malaysia Terengganu
  • MHD IKHWANUDDIN ABDULLAH Universiti Malaysia Terengganu

DOI:

https://doi.org/10.46754/ps.2023.07.005

Keywords:

Fishmeal replacement, aquafeed, circular economy, microbial biomass, insect meal, marine amphipods

Abstract

 

With aquaculture intensifying to meet future demands and forage fish stocks nearing their ecological limits, fed aquaculture must continue to scale down reliance on fishmeal and fish oil to safeguard the sustainable development of the sector. Sustainable alternative feed ingredients for the production of aquafeeds are paramount. Apart from terrestrial plant-based and animal-based ingredients, fishery and aquaculture by-products and insects are presently the most viable alternative sources.

 

References

Aas, T. S., Grisdale-Helland, B., Terjesen, B. F., & Helland, S. J. (2006). Improved growth and nutrient utilisation in Atlantic salmon (Salmo salar) fed diets containing a bacterial protein meal. Aquaculture, 259(1- 4), 365-376. https://doi.org/10.1016/j. aquaculture.2006.05.032

Aasen, I. M., Sandbakken, I. S., Toldnes, B., Roleda, M. Y., & Slizyte, R. (2022). Enrichment of the protein content of the macroalgae Saccharina latissima and Palmaria palmata. Algal Research, 65, 102727. https://doi.org/10.1016/j. algal.2022.102727

Abdel-Warith, A. W. A., Younis, E. S. M., & Al-Asgah, N. A. (2016). Potential use of green macroalgae Ulva lactuca as a feed supplement in diets on growth performance, feed utilization and body composition of the African catfish, Clarias gariepinus. Saudi Journal of Biological Sciences, 23(3), 404-409. https://doi.org/10.1016/j. sjbs.2015.11.010

Achionye-Nzeh, C. G., & Ngwudo, O. S. (2021). Growth response of Clarias anguillaris fingerlings fed larvae of Musca domestica and soyabean diet in the laboratory. Bioscience Research Journal, 15(3).

Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11(1), 1-10. https://doi. org/10.1186/1475-2859-11-96

Ahmad, A., W. Hassan, S., & Banat, F. (2022). An overview of microalgae biomass as a sustainable aquaculture feed ingredient: Food security and circular economy. Bioengineered, 13(4), 9521- 9547. https://doi.org/10.1080/21655979.20 22.2061148

Ahmad, M. T., Shariff, M., Md. Yusoff, F., Goh, Y. M., & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12(1), 328-346. https://doi.org/10.1111/raq.12320

Ahn, C. B., Cho, Y. S., & Je, J. Y. (2015). Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry, 168, 151-156. https://doi. org/10.1016/j.foodchem.2014.05.112

Alberts-Hubatsch, H., Jiménez-Prada, P., Beermann, J., & Slater, M. J. (2019a). Amphipod meal in formulated diets for juvenile turbot Psetta maxima.

Alberts-Hubatsch, H., Slater, M. J., & Beermann, J. (2019b). Effect of diet on growth, survival and fatty acid profile of marine amphipods: Implications for utilisation as a feed ingredient for sustainable aquaculture. Aquaculture Environment Interactions, 11, 481-491. https://doi. org/10.3354/aei00329

Albrektsen, S., Kortet, R., Skov, P. V., Ytteborg, E., Gitlesen, S., Kleinegris, D., ... & Øverland, M. (2022). Future feed resources in sustainable salmonid production: A review. Reviews in Aquaculture. https://doi. org/10.1111/raq.12673

Alfiko, Y., Xie, D., Astuti, R. T., Wong, J., & Wang, L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquaculture and Fisheries, 7(2), 166-178. https://doi.org/10.1016/j. aaf.2021.10.004

Al-Hafedh, Y. S., & Alam, A. (2013). Replacement of fishmeal by single cell protein derived from yeast grown on date (Phoenix dactylifera) industry waste in the diet of Nile Tilapia (Oreochromis niloticus) fingerlings. Journal of Applied Aquaculture, 25(4), 346-358. https://doi.or g/10.1080/10454438.2013.852419

Allegretti, G., Schmidt, V., & Talamini, E. (2017). Insects as feed: Species selection and their potential use in Brazilian poultry production. World’s Poultry Science Journal, 73(4), 928-937. https://doi. org/10.1017/S004393391700054X

Alloul, A., Wille, M., Lucenti, P., Bossier, P., Van Stappen, G., & Vlaeminck, S. E. (2021). Purple bacteria as added-value protein ingredient in shrimp feed: Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress. Aquaculture, 530, 735788. https:// doi.org/10.1016/j.aquaculture.2020.735788

Al-Ruqaie, I. M. (2007). Feed on growth and feed utilization of Tilapia (Oreochronnis niloticus) in Saudi Arabia. Pakistan Journal of Biological Sciences, 10(19), 3248-3253.

Altomare, A. A., Baron, G., Aldini, G., Carini, M., & D’Amato, A. (2020). Silkworm pupae as source of high‐value edible proteins and of bioactive peptides. Food Science & Nutrition, 8(6), 2652-2661. https://doi.org/10.1002/fsn3.1546

Ambigaipalan, P., & Shahidi, F. (2017). Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. Journal of Functional Foods, 34, 7-17. https://doi.org/10.1016/j. jff.2017.04.013

Ang, C. Y., Yong, A. S. K., Azad, S. A., Lim, L. S., Zuldin, W. H., & Lal, M. T. M. (2021). Valorization of macroalgae through fermentation for aquafeed production: A review. Fermentation, 7(4), 304. https://doi. org/10.3390/fermentation7040304

Angell, A. R., Angell, S. F., de Nys, R., & Paul, N. A. (2016). Seaweed as a protein source for mono-gastric livestock. Trends in Food Science & Technology, 54, 74-84. https:// doi.org/10.1016/j.tifs.2016.05.014

Anh, N. T. N., Hai, T. N., & Hien, T. T. T. (2018). Effects of partial replacement of fishmeal protein with green seaweed (Cladophora spp.) protein in practical diets for the black tiger shrimp (Penaeus monodon) postlarvae. Journal of Applied Phycology, 30(4), 2649-2658. https://doi. org/10.1007/s10811-018-1457-7

Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., & Nasri, N. S. (2018). Treatment of wastewater using seaweed: A review. International Journal of Environmental Research and Public Health, 15(12), 2851. https://doi. org/10.3390/ijerph15122851

Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: Treatments, environmental impacts, current and potential uses. International Journal of Food Science & Technology, 43(4), 726-745. https://doi. org/10.1111/j.1365-2621.2006.01513.x

Ashour, M., Abo-Taleb, H. A., Hassan, A. K. M., Abdelzaher, O. F., Mabrouk, M. M., Elokaby, M. A., ... & Mansour, A. T. (2021). Valorization use of amphipod meal, Gammarus pulex, as a fishmeal substitute on growth performance, feed utilization, histological and Histometric indices of the gut, and economic revenue of Grey mullet. Journal of Marine Science and Engineering, 9(12), 1336. https://doi. org/10.3390/jmse9121336

Ayadi, F. Y., Rosentrater, K. A., & Muthukumarappan, K. (2012). Alternative protein sources for aquaculture feeds. Journal of Aquaculture Feed Science and Nutrition, 4(1), 1-26.

Azra, M. N., Okomoda, V. T., & Ikhwanuddin, M. (2022). Breeding technology as a tool for sustainable aquaculture production and ecosystem services. Frontiers in Marine Science, 9, 679529. DOI: 10.3389/ fmars.2022.679529

Baeza-Rojano, E., García, S., Garrido, D., Guerra-García, J. M., & Domingues, P. (2010). Use of Amphipods as alternative prey to culture cuttlefish (Sepia officinalis) hatchlings. Aquaculture, 300(1-4), 243-246. https://doi.org/10.1016/j. aquaculture.2009.12.029

Baeza‐Rojano, E., Domingues, P., Guerra‐ García, J. M., Capella, S., Noreña‐Barroso, E., Caamal‐Monsreal, C., & Rosas, C. (2013a). Marine gammarids (Crustacea: Amphipoda): A new live prey to culture Octopus maya hatchlings. Aquaculture Research, 44(10), 1602-1612. https://doi. org/10.1111/j.1365-2109.2012.03169.x

Baeza-Rojano, E., Calero-Cano, S., Hachero- Cruzado, I., & Guerra-García, J. M. (2013b). A preliminary study of the Caprella scaura amphipod culture for potential use in aquaculture. Journal of Sea Research, 83,146-151

Baeza-Rojano, E., Hachero-Cruzado, I., & Guerra-García, J. M. (2014). Nutritional analysis of freshwater and marine amphipods from the Strait of Gibraltar and potential aquaculture applications. Journal of Sea Research, 85, 29-36.

Bake, G. G., Endo, M., Akimoto, A., & Takeuchi, T. (2009). Evaluation of recycled food waste as a partial replacement of fishmeal in diets for the initial feeding of Nile tilapia Oreochromis niloticus. Fisheries Science, 75(5), 1275-1283. https://doi. org/10.1007/s12562-009-0133-x

Bake, G. G., Endo, M., Satoh, S., Sadiku, S. O. E., & Takeuchi, T. (2013). Nitrogen and mineral budget of Nile tilapia fry fed recycled food wastes materials supplemented with lysine and methionine in a closed recirculating fish culture system. http://repository.futminna.edu.ng:8080/ jspui/handle/123456789/1983

Barroso, F. G., de Haro, C., Sánchez-Muros, M. J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422, 193-201. https://doi. org/10.1016/j.aquaculture.2013.12.024

Basto, A., Calduch-Giner, J., Oliveira, B., Petit, L., Sá, T., Maia, M. R., ... & Valente, L. M. (2021). The use of defatted Tenebrio molitor larvae meal as a main protein source is supported in European sea bass (Dicentrarchus labrax) by data on growth performance, lipid metabolism, and flesh quality. Frontiers in Physiology, 473. https://doi.org/10.3389/fphys.2021.659567

Belton, B., Bush, S. R., & Little, D. C. (2018). Not just for the wealthy: Rethinking farmed fish consumption in the Global South. Global Food Security, 16, 85-92. https://doi.org/10.1016/j.gfs.2017.10.005

Belton, B., Little, D. C., Zhang, W., Edwards, P., Skladany, M., & Thilsted, S. H. (2020). Farming fish in the sea will not nourish the world. Nature Communications, 11(1), 1-8. https://doi.org/10.1038/s41467-020-19679-9

Bleakley, S., & Hayes, M. (2017). Algal proteins: Extraction, application, and challenges concerning production. Foods, 6(5), 33. https://doi.org/10.3390/foods6050033

Boyd, C. E., D’Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., ... & Valenti, W. C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633.

Brown, N., Eddy, S., & Plaud, S. (2011). Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Aquaculture, 322, 177-183. https:// doi.org/10.1016/j.aquaculture.2011.09.017

Bruno, S. F., Ekorong, F. J. A. A., Karkal, S. S., Cathrine, M. S. B., & Kudre, T. G. (2019). Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends in Food Science & Technology, 85, 10-22. https://doi. org/10.1016/j.tifs.2018.12.004

Buckle, K. (2015). Can food science reduce world hunger? In Food security and food safety for the twenty-first century (pp. 3-12). Singapore: Springer.

Canada Justice Laws. (2018). Feed Regulations, 1983 (SOR/83- 593). [Cited 15 March 2018]. http://lawslois.justice.gc.ca/eng/ regulations/SOR-83-593/

Caruso, G. (2016). Fishery wastes and by-products: A resource to be valorised. Journal of FisheriesSciences.com, 10(1), 0-0.

Castrica, M., Tedesco, D. E., Panseri, S., Ferrazzi, G., Ventura, V., Frisio, D. G., & Balzaretti, C. M. (2018). Pet food as the most concrete strategy for using food waste as feedstuff within the European context: A feasibility study. Sustainability, 10(6), 2035. https://doi.org/10.3390/su10062035

Chen, F., Leng, Y., Lu, Q., & Zhou, W. (2021). The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Research, 60, 102541. https://doi.org/10.1016/j.algal.2021.102541

Cheng, Z., Mo, W. Y., Man, Y. B., Nie, X. P., Li, K. B., & Wong, M. H. (2014). Replacing fish meal by food waste in feed pellets to culture lower trophic level fish containing acceptable levels of organochlorine pesticides: Health risk assessments. Environment International, 73, 22-27. https://doi. org/10.1016/j.envint.2014.07.001

Cheng, Z., Mo, W. Y., Man, Y. B., Lam, C. L., Choi, W. M., Nie, X. P., ... & Wong, M. H. (2015). Environmental mercury concentrations in cultured low-trophic-level fish using food waste-based diets. Environmental Science and Pollution Research, 22(1), 495-507. https://doi. org/10.1007/s11356-014-3333-6

Cheung, R. C. F., Ng, T. B., & Wong, J. H. (2015). Marine peptides: Bioactivities and applications. Marine Drugs, 13(7), 4006- 4043. https://doi.org/10.3390/md13074006

Chi, C. F., Wang, B., Wang, Y. M., Zhang, B., & Deng, S. G. (2015). Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of Functional Foods, 12, 1-10. https://doi.org/10.1016/j. jff.2014.10.027

Choi, W. M., Lam, C. L., Mo, W. Y., & Wong, M. H. (2016). The use of food wastes as feed ingredients for culturing grass carp (Ctenopharyngodon idellus) in Hong Kong. Environmental Science and Pollution Research, 23(8), 7178-7185. https://doi. org/10.1007/s11356-015-5465-8

Chopin, T., & Tacon, A. G. (2021). Importance of seaweeds and extractive species in global aquaculture production. Reviews in Fisheries Science & Aquaculture, 29(2), 139-148.

Cole, A. J., De Nys, R., & Paul, N. A. (2015). Biorecovery of nutrient waste as protein in freshwater macroalgae. Algal Research, 7, 58-65. https://doi.org/10.1016/j. algal.2014.12.005

Costello, C., Cao, L., Gelcich, S., Cisneros- Mata, M. Á., Free, C. M., Froehlich, H. E., ... & Lubchenco, J. (2020). The future of food from the sea. Nature, 588(7836), 95- 100. https://doi.org/10.1038/s41586-020- 2616-y

Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M., & Froehlich, H. E. (2020). Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nature Food, 1(5), 301- 308. https://doi.org/10.1038/s43016-020- 0078-x

Coutteau, P., & Sorgeloos, P. (1992). The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: An international survey. Journal of Shellfish Research, 11, 467-467. http://hdl.handle.net/1854/LU- 240467

Daniel, N. (2018). A review on replacing fish meal in aqua feeds using plant protein sources. International Journal of Fisheries and Aquatic Studies, 6(2), 164-179.

Delamare-Deboutteville, J., Batstone, D. J., Kawasaki, M., Stegman, S., Salini, M., Tabrett, S., ... & Hülsen, T. (2019). Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. Water Research X, 4, 100031. https://doi.org/10.1016/j.wroa.2019.100031

Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., & Weltzien, E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492, 24-34. https:// doi.org/10.1016/j.aquaculture.2018.03.038

EFSA (European Food Safety Authority Scientific Committee). (2015). Scientific opinion on a risk profile related to production and consumption of insects as food and feed. EFSA Journal, 13(4257).

Elhag, A. I., Rahmah, S., Rasid, R. A., Shahin, S., Noor, G. A. G. R., Muda, M. S., ... & Liew, H. J. (2022). Fatty acids in the inedible parts of jade perch Scortum barcoo. Aquaculture International, 1-15.

Emeka, A. I., & Oscar, E. V. (2016). Comparative study of growth performance, food utilization and survival of the African catfish Clarias gariepinus (Burchell, 1822) fingerlings fed live maggot (Musca domestica) and coppens commercial feed. International Journal of Scientific Research in Science, Engineering and Technology, 2(2), 379-386.

EU. (2003). The use of fish by-products in aquaculture. Health & Consumer Protection. Directorate General. Ed. Report of the Scientific Committee on Animal Health and Animal Welfare, 93.

EU. (2009). Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009, Animal By-products Regulation (EC) No. 1069/2009.

EU (The European Union). (2013). Regulations Commission Regulation (EU) No. 68/2013 of 16 January 2013 on the Catalogue of Feed Materials. [Cited 5 Apr. 2017]. http:// eur-lex.europa.eu/Le xUriServ/LexUriServ. do?uri=OJ:L:2013:029:0001:0064:EN: PDF

FAO. (2015). The State of Food Insecurity in the World 2015. Food and Agriculture Organization of the United Nations, Rome Italy. http://www.fao.org/hunger/en/. Retrieved 12 January 2016.

FAO. (2018). The State of World Fisheries and Aquaculture 2018— Meeting the Sustainable Development Goals (FAO).

FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en.

FAOSTAT. (2014). The State of World Fisheries and Aquaculture. Opportunities and challenges. Rome: FAO.

Fasaei, F., Bitter, J. H., Slegers, P. M., & Van Boxtel, A. J. B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research, 31, 347-362. https://doi.org/10.1016/j. algal.2017.11.038

Ferdouse, F., Holdt, S. L., Smith, R., Murúa, P., & Yang, Z. (2018). The global status of seaweed production, trade and utilization. Globefish Research Programme, 124, I.

Fernandez-Gonzalez, V., Toledo-Guedes, K., Valero-Rodriguez, J. M., Agraso, M. D. M., & Sanchez-Jerez, P. (2018). Harvesting amphipods applying the integrated multitrophic aquaculture (IMTA) concept in off-shore areas. Aquaculture, 489, 62-69. https://doi.org/10.1016/j. aquaculture.2018.02.008

Ferraro, V., Cruz, I. B., Jorge, R. F., Malcata, F. X., Pintado, M. E., & Castro, P. M. (2010). Valorisation of natural extracts from marine source focused on marine by-products: A review. Food Research International, 43(9), 2221-2233. https://doi.org/10.1016/j. foodres.2010.07.034

Filipski, M., & Belton, B. (2018). Give a man a fishpond: Modeling the impacts of aquaculture in the rural economy. World Development, 110, 205-223. https://doi. org/10.1016/j.worlddev.2018.05.023

Fleurence, J., Morançais, M., & Dumay, J. (2018). Proteins in food processing. Seaweed Proteins, 245-262. https://doi.org/10.1016/ B978-0-08-100722-8.00010-3

Fowles, T. M., & Nansen, C. (2020). Insect-based bioconversion: Value from food waste. In Food waste management (pp. 321- 346). Cham: Palgrave Macmillan. https:// doi.org/10.1007/978-3-030-20561-4_12

Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T., & Halpern, B. S. (2018). Avoiding the ecological limits of forage fish for fed aquaculture. Nature Sustainability, 1(6), 298-303. https://doi. org/10.1038/s41893-018-0077-1

Gamarro, E. G., Orawattanamateekul, W., Sentina, J., & Gopal, T. S. (2013). By-products of tuna processing. GLOBEFISH Research Programme, 112, I.

García-Romero, J., Ginés, R., Izquierdo, M., & Robaina, L. (2014). Marine and freshwater crab meals in diets for red porgy (Pagrus pagrus): Effect on fillet fatty acid profile and flesh quality parameters. Aquaculture, 420, 231-239. https://doi.org/10.1016/j. aquaculture.2013.10.035

Gasco, L., Acuti, G., Bani, P., Dalle Zotte, A., Danieli, P. P., De Angelis, A., ... & Roncarati, A. (2020). Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Italian Journal of Animal Science, 19(1), 360- 372. https://doi.org/10.1080/182805 1X.2020.1743209

Ge, S., & Champagne, P. (2017). Cultivation of the marine macroalgae Chaetomorpha linum in municipal wastewater for nutrient recovery and biomass production. Environmental Science & Technology, 51(6), 3558-3566. https://doi.org/10.1021/acs.est.6b06039

Gehring, C. K., Gigliotti, J. C., Moritz, J. S., Tou, J. C., & Jaczynski, J. (2011). Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: A review. Food Chemistry, 124(2), 422-431. https://doi.org/10.1016/j. foodchem.2010.06.078

Georganas, A., Giamouri, E., Pappas, A. C., Papadomichelakis, G., Galliou, F., Manios, T., ... & Zervas, G. (2020). Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods, 9(3), 291. https://doi. org/10.3390/foods9030291

Glencross, B. D., Huyben, D., & Schrama, J. W. (2020). The application of single-cell ingredients in aquaculture feeds—A review. Fishes, 5(3), 22. https://doi. org/10.3390/fishes5030022

Goodman, D., & Robison, R. (2013). The new rich in Asia: Mobile phones, McDonald’s and middle class revolution. Routledge.

Gordalina, M., Pinheiro, H. M., Mateus, M., da Fonseca, M. M. R., & Cesário, M. T. (2021). Macroalgae as protein sources—A review on protein bioactivity, extraction, purification and characterization. Applied Sciences, 11(17), 7969. https://doi. org/10.3390/app11177969

Gratacap, R. L., Wargelius, A., Edvardsen, R. B., & Houston, R. D. (2019). Potential of genome editing to improve aquaculture breeding and production. Trends in Genetics, 35(9), 672-684.

Ghamkhar, R., & Hicks, A. (2020). Comparative environmental impact assessment of aquafeed production: Sustainability implications of forage fish meal and oil free diets. Resources, Conservation and Recycling, 161, 104849. https://doi. org/10.1016/j.resconrec.2020.104849

Gisbert, E., Fournier, V., Solovyev, M., Skalli, A., & Andree, K. B. (2018). Diets containing shrimp protein hydrolysates provided protection to European sea bass (Dicentrarchus labrax) affected by a Vibrio pelagius natural infection outbreak. Aquaculture, 495, 136-143. https:// doi.org/10.1016/j.aquaculture.2018.04.051

Guerra-García, J. M., Hachero-Cruzado, I., González-Romero, P., Jiménez-Prada, P., Cassell, C., & Ros, M. (2016). Towards integrated multi-trophic aquaculture: Lessons from caprellids (Crustacea: Amphipoda). PLOS ONE, 11(4), e0154776. https://doi.org/10.1371/journal. pone.0154776

Guerreiro, I., Castro, C., Antunes, B., Coutinho, F., Rangel, F., Couto, A., ... & Enes, P. (2020). Catching black soldier fly for meagre: Growth, whole-body fatty acid profile and metabolic responses. Aquaculture, 516, 734613. https://doi.org/10.1016/j. aquaculture.2019.734613

Guillen, J., Holmes, S. J., Carvalho, N., Casey, J., Dörner, H., Gibin, M., ... & Zanzi, A. (2018). A review of the European Union landing obligation focusing on its implications for fisheries and the environment. Sustainability, 10(4), 900. https://doi.org/10.3390/su10040900

Hamidoghli, A., Yun, H., Won, S., Kim, S., Farris, N. W., & Bai, S. C. (2019). Evaluation of a single-cell protein as a dietary fish meal substitute for whiteleg shrimp Litopenaeus vannamei. Fisheries Science, 85(1), 147- 155. https://doi.org/10.1007/s12562-018- 1275-5

Hanachi, P., Karbalaei, S., Walker, T. R., Cole, M., & Hosseini, S. V. (2019). Abundance and properties of microplastics found in commercial fish meal and cultured common carp (Cyprinus carpio). Environmental Science and Pollution Research, 26(23), 23777-23787. https://doi.org/10.1007/ s11356-019-05637-6

Hansen, J. Ø., Lagos, L., Lei, P., Reveco-Urzua, F. E., Morales-Lange, B., Hansen, L. D., ... & Øverland, M. (2021). Down-stream processing of baker’s yeast (Saccharomyces cerevisiae)–Effect on nutrient digestibility and immune response in Atlantic salmon (Salmo salar). Aquaculture, 530, 735707. https://doi.org/10.1016/j. aquaculture.2020.735707

Hardy, R. W., Patro, B., Pujol‐Baxley, C., Marx, C. J., & Feinberg, L. (2018). Partial replacement of soybean meal with Methylobacterium extorquens single‐cell protein in feeds for rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Research, 49(6), 2218-2224. https://doi.org/10.1111/ are.13678

Harlıoğlu, M. M., & Farhadi, A. (2018). Importance of Gammarus in aquaculture. Aquaculture International, 26, 1327-1338. https://doi.org/10.1007/s10499-018-0287-6

Hassaan, M. S., Mahmoud, S. A., Jarmolowicz, S., El‐Haroun, E. R., Mohammady, E. Y., & Davies, S. J. (2018). Effects of dietary baker’s yeast extract on the growth, blood indices and histology of Nile tilapia (Oreochromis niloticus L.) fingerlings. Aquaculture Nutrition, 24(6), 1709-1717. https://doi. org/10.1111/anu.12805

Hawkey, K. J., Lopez-Viso, C., Brameld, J. M., Parr, T., & Salter, A. M. (2021). Insects: A potential source of protein and other nutrients for feed and food. Annual Review of Animal Biosciences, 9, 333- 354. https://doi.org/10.1146/annurev-animal-021419-083930

Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1-22. https://doi. org/10.1016/j.anifeedsci.2015.03.001

Herawati, V. E., Darmanto, Y. S., Rismaningsih, N., Hutabarat, J., Prayitno, S. B., & Radjasa, O. K. (2020). Effect of feeding with Phronima sp. on growth, survival rate and nutrient value content of Pacific white shrimp (Litopenaeus vannamei) Post-larvae. Aquaculture, 529, 735674. https:// doi.org/10.1016/j.aquaculture.2020.735674

Hessler Frelinckx, J. C. (2019). Behavioural study of the house cricket (Acheta domesticus). First cycle, G2E. Uppsala: Swedish University of Agricultural Sciences, Dept. of Ecology.

Hjelleset, T. (2022). Mineral carryover from shelled mussel meal in the spotted wolffish (Anarhichas Minor). Potential of dietary mineral supplementation on growth, stress and health. [Master’s Thesis, University of Gothenburg/Department of Biological and Environmental Sciences].

HKEPD. (2012). Monitoring of Solid Waste in Hong Kong Waste Statistics for 2011. Environmental Protection Department, Hong Kong SAR Government.

Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23(3), 543-597. https:// doi.org/10.1007/s10811-010-9632-5

Hoover, C. M., Sokolow, S. H., Kemp, J., Sanchirico, J. N., Lund, A. J., Jones, I. J., ... & De Leo, G. A. (2019). Modelled effects of prawn aquaculture on poverty alleviation and schistosomiasis control. Nature Sustainability, 2(7), 611-620. https://doi. org/10.1038/s41893-019-0301-7

Hsieh, M. J. (2010). Effects of fish meal replacement by kitchen waste on the growth and body composition of Tilapia (Oreochromis nilotica × Oreochromis aurea), Giant Grou- per (Epinephelus lanceolatus) and Orange-Spotted Grouper (Epinephelus coioides). [Master’s Thesis, National Taiwan Ocean University].

Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., ... & Strugnell, J. M. (2019). The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth, 1(3), 316-329. https://doi.org/10.1016/j. oneear.2019.10.018

Hua, K. (2021). A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture, 530, 735732. https://doi. org/10.1016/j.aquaculture.2020.735732

Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience, 67(4), 386-391. https://doi.org/10.1093/biosci/bix010

IPIFF. (2019). The European Insect Sector today: Challenges, opportunities and regulatory landscape. IPIFF vision paper on the future of the insect sector towards 2030. Accessed August 1st, 2019, from http://ipiff.org/wp-content/uploads/2018/11/

Iriondo-DeHond, M., Miguel, E., & Castillo, M. (2019). Byproducts as a source of novel ingredients in dairy foods. https://doi. org/10.1016/B978-0-08-100596-5.22137-9

Jeong, S. M., Khosravi, S., Mauliasari, I. R., & Lee, S. M. (2020). Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Fisheries and Aquatic Sciences, 23(1), 1-8. https://doi.org/10.1186/s41240-020- 00158-7

Ji, H., Zhang, J. L., Huang, J. Q., Cheng, X. F., & Liu, C. (2015). Effect of replacement of dietary fish meal with silkworm pupae meal on growth performance, body composition, intestinal protease activity and health status in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Research, 46(5), 1209- 1221. https://doi.org/10.1111/are.12276

Jiménez-Prada, P., Hachero-Cruzado, I., & Guerra-García, J. M. (2021). Aquaculture waste as food for amphipods: The case of Gammarus insensibilis in marsh ponds from southern Spain. Aquaculture International, 29(1), 139-153. https://doi. org/10.1007/s10499-020-00615-z

Jiménez-Prada, P., Hachero-Cruzado, I., Giráldez, I., Fernández-Diaz, C., Vilas, C., Cañavate, J. P., & Guerra-García, J. M. (2018). Crustacean amphipods from marsh ponds: A nutritious feed resource with potential for application in Integrated Multi-Trophic Aquaculture. PeerJ, 6, e4194. https://doi.org/10.7717/peerj.4194

Jiménez-Prada, P., Hachero-Cruzado, I., & Guerra-García, J. M. (2015). The importance of amphipods in diets of marine species with aquaculture interest of Andalusian coast.

Józefiak, A., Nogales-Mérida, S., Mikołajczak, Z., Rawski, M., Kierończyk, B., & Mazurkiewicz, J. (2019). The utilization of full-fat insect meal in Rainbow Trout () Nutrition: The effects on growth performance, Intestinal Microbiota and Gastrointestinal Tract Histomorphology. Annals of Animal Science, 19(3), 747-765. https://doi. org/10.2478/aoas-2019-0020

Jusadi, D., Ekasari, J., Suprayudi, M. A., Setiawati, M., & Fauzi, I. A. (2021). Potential of underutilized marine organisms for aquaculture feeds. Frontiers in Marine Science, 7, 609471. https://doi.org/10.3389/ fmars.2020.609471

Karapanagiotidis, I. T. (2020). The re-authorization of non-ruminant processed animal proteins in European aqua feeds. Fisheries and Aquaculture Journal, 11(5), 1a-1a.

Karthick Raja, P., Aanand, S., Stephen Sampathkumar, J., & Padmavathy, P. (2019). Silkworm pupae meal as alternative source of protein in fish feed. Journal of Entomology and Zoology Studies, 7(4), 78- 85.

Katya, K., Borsra, M. Z. S., Ganesan, D., Kuppusamy, G., Herriman, M., Salter, A., & Ali, S. A. (2017). Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater. International Aquatic Research, 9(4), 303-312. https://doi. org/10.1007/s40071-017-0178-x

Khan, M. A., Das, S. K., & Bhakta, D. (2018). Food and feeding habits, gastro-somatic index and gonado-somatic index of Scylla serrata from Hooghly-Matlah estuary of West Bengal, India. Journal of the Marine Biological Association of India, 60(1), 14. doi: 10.6024/jmbai.2018.60.1.1994-02

Kim, H. S., Jung, W. G., Myung, S. H., Cho, S. H., & Kim, D. S. (2014). Substitution effects of fishmeal with tuna byproduct meal in the diet on growth, body composition, plasma chemistry and amino acid profiles of juvenile olive flounder (Paralichthys olivaceus). Aquaculture, 431, 92-98. https:// doi.org/10.1016/j.aquaculture.2014.03.025

Khanjani, M. H., & Sharifinia, M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Reviews in Aquaculture, 12(3), 1836-1850. https:// doi.org/10.1111/raq.12412

Kolawole, A. A., & Ugwumba, A. A. A. (2018). Economic evaluation of different culture enclosures for Musca domestica larval production and their utilization for Clarias gariepinus (Burchell, 1822) Fingerlings Diets. Notulae Scientia Biologicae, 10(4), 466-474. https://doi.org/10.15835/ nsb10410271

Kotzamanis, Y. P., Gisbert, E., Gatesoupe, F. J., Infante, J. Z., & Cahu, C. (2007). Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(1), 205-214. https://doi. org/10.1016/j.cbpa.2006.12.037

Kurečka, M., Kulma, M., Petříčková, D., Plachý, V., & Kouřimská, L. (2021). Larvae and pupae of Alphitobius diaperinus as promising protein alternatives. European Food Research and Technology, 247(10), 2527-2532. https://doi.org/10.1007/ s00217-021-03807-w

Larsen, J., & Roney, J. M. (2013). Farmed fish production overtakes beef. Washington, DC: Earth Policy Institute.

Leelatanawit, R., Uawisetwathana, U., Khudet, J., Klanchui, A., Phomklad, S., Wongtripop, S., ... & Karoonuthaisiri, N. (2014). Effects of polychaetes (Perinereis nuntia) on sperm performance of the domesticated black tiger shrimp (Penaeus monodon). Aquaculture, 433, 266-275. https://doi.org/10.1016/j. aquaculture.2014.06.034

Li, Y., Kortner, T. M., Chikwati, E. M., Belghit, I., Lock, E. J., & Krogdahl, Å. (2020). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture, 520, 734967. https://doi.org/10.1016/j. aquaculture.2020.734967

Liland, N. S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C. G., Waagbø, R., ... & Lock, E. J. (2017). Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLOS ONE, 12(8), e0183188. https://doi.org/10.1371/journal. pone.0183188

Lopes, C., Antelo, L. T., Franco-Uría, A., Alonso, A. A., & Pérez-Martín, R. (2015). Valorisation of fish by-products against waste management treatments–Comparison of environmental impacts. Waste Management, 46, 103-112. https://doi. org/10.1016/j.wasman.2015.08.017

Macombe, C., Le Feon, S., Aubin, J., & Maillard, F. (2019). Marketing and social effects of industrial scale insect value chains in Europe: Case of mealworm for feed in France. Journal of Insects as Food and Feed, 5(3), 215-224. https://doi. org/10.3920/JIFF2018.0047

Magnusson, M., Glasson, C. R., Vucko, M. J., Angell, A., Neoh, T. L., & de Nys, R. (2019). Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoi. Algal Research, 41, 101555. https://doi.org/10.1016/j.algal.2019.101555

Malcorps, W., Kok, B., van ‘t Land, M., Fritz, M., van Doren, D., Servin, K., ... & Davies, S. J. (2019). The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability, 11(4), 1212. https://doi.org/10.3390/su11041212

Mancuso, T., Pippinato, L., & Gasco, L. (2019). The European insects sector and its role in the provision of green proteins in feed supply. Calitatea, 20(S2), 374-381.

Manikandan, D. B., Veeran, S., Seenivasan, S., Sridhar, A., Arumugam, M., Yangen, Z., & Ramasamy, T. (2022). Exploration of marine red seaweed as a dietary fish meal replacement and its potentiality on growth, hematological, biochemical, and enzyme activity in freshwater fish Labeo rohita. Tropical Animal Health and Production, 54(6), 1-15. https://doi. org/10.1007/s11250-022-03392-4

Masson, M. V., de Souza Tavares, W., Alves, J. M., Ferreira-Filho, P. J., Barbosa, L. R., Wilcken, C. F., & Zanuncio, J. C. (2020). Bioecological aspects of the common black field cricket, Gryllus assimilis (Orthoptera: Gryllidae) in the laboratory and in Eucalyptus (Myrtaceae) plantations. Journal of Orthoptera Research, 29(1), 83-89. https:// doi.org/10.3897/jor.29.48966

Matassa, S., Papirio, S., Pikaar, I., Hülsen, T., Leijenhorst, E., Esposito, G., ... & Verstraete, W. (2020). Upcycling of biowaste carbon and nutrients in line with consumer confidence: The “full gas” route to single cell protein. Green Chemistry, 22(15), 4912-4929. https://doi. org/10.1039/D0GC01382J

Michalk, D. L., Kemp, D. R., Badgery, W. B., Wu, J., Zhang, Y., & Thomassin, P. J. (2019). Sustainability and future food security—A global perspective for livestock production. Land Degradation & Development, 30(5), 561-573. https://doi. org/10.1002/ldr.3217

Miyashita, K., Mikami, N., & Hosokawa, M. (2013). Chemical and nutritional characteristics of brown seaweed lipids: A review. Journal of Functional Foods, 5(4), 1507-1517. https://doi.org/10.1016/j. jff.2013.09.019

Mo, W. Y., Cheng, Z., Choi, W. M., Man, Y. B., Liu, Y., & Wong, M. H. (2014). Application of food waste based diets in polyculture of low trophic level fish: Effects on fish growth, water quality and plankton density. Marine Pollution Bulletin, 85(2), 803-809. https:// doi.org/10.1016/j.marpolbul.2014.01.020

Mohan, K., Rajan, D. K., Muralisankar, T., Ganesan, A. R., Sathishkumar, P., & Revathi, N. (2022). Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture, 738095. https://doi. org/10.1016/j.aquaculture.2022.738095

Muller-Feuga, A. (2000). The role of microalgae in aquaculture: Situation and trends. Journal of Applied Phycology, 12(3), 527-534. https://doi.org/10.1023/A:1008106304417

Nagappan, S., Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Mahata, C., ... & Kumar, G. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1-20. https://doi.org/10.1016/j. jbiotec.2021.09.003

Najafian, L., & Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33(1), 178-185. https://doi.org/10.1016/j. peptides.2011.11.013

Nasser, N., Abiad, M. G., Babikian, J., Monzer, S., & Saoud, I. P. (2018). Using restaurant food waste as feed for Nile tilapia production. Aquaculture Research, 49(9), 3142-3150. https://doi.org/10.1111/ are.13777

Neveux, N., Bolton, J. J., Bruhn, A., Roberts, D. A., & Ras, M. (2018). The bioremediation potential of seaweeds: Recycling nitrogen, phosphorus, and other waste products. Blue Biotechnology: Production and Use of Marine Molecules, 1, 217-239. https://doi. org/10.1002/9783527801718.ch7

Nguyen, N. H., Trinh, L. T., Chau, D. T., Baruah, K., Lundh, T., & Kiessling, A. (2019). Spent brewer’s yeast as a replacement for fishmeal in diets for giant freshwater prawn (Macrobrachium rosenbergii), reared in either clear water or a biofloc environment. Aquaculture Nutrition, 25(4), 970-979. https://doi.org/10.1111/anu.12915

Nikoletta, H. (2019). Insects as animal feed. Magyar Allatorvosok Lapja, 141(2019), 117-128.

Niu, J., Xie, S. W., Fang, H. H., Xie, J. J., Guo, T. Y., Zhang, Y. M., ... & Liu, Y. J. (2018). Dietary values of macroalgae Porphyra haitanensis in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: Effect on growth, immune response and intestinal microbiota. Fish & Shellfish Immunology, 81, 135-149. https:// doi.org/10.1016/j.fsi.2018.06.010

Nogales‐Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., ... & Józefiak, A. (2019). Insect meals in fish nutrition. Reviews in Aquaculture, 11(4), 1080-1103. https://doi.org/10.1111/ raq.12281

Norambuena, F., Estevez, A., Bell, G., Carazo, I., & Duncan, N. (2012). Proximate and fatty acid compositions in muscle, liver and gonads of wild versus cultured broodstock of Senegalese sole (Solea senegalensis). Aquaculture, 356, 176-185. https://doi.org/10.1016/j. aquaculture.2012.05.018

Nurdiani, R., Vasiljevic, T., Yeager, T., Singh, T. K., & Donkor, O. N. (2017). Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead (Platycephalus fuscus) by-products. European Food Research and Technology, 243(4), 627-637. https://doi. org/10.1007/s00217-016-2776-z

Nuswantoro, S., & Rahardjo, S. S. P. (2018). Effect of using silkworm (Tubifex sp.) living on the survival rate and growth of the catfish larvae (Clarias sp.). IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 1(2), 42-46. DOI: 10.9790/2380- 1102024246

Okomoda, V. T., Musa, S. O., Tiamiyu, L. O., Solomon, S. G., Oladimeji, A. S., Hassan, A., ... & Abol-Munafi, A. B. (2020). Fermentation of hydrothermal processed Jatropha curcas Kernel: Effects on the performance of Clarias gariepinus (Burchell, 1822) fingerlings. Aquaculture Reports, 18, 100428. https://doi.org/10.1016/j.aqrep.2020.100428

Oliva-Teles, A., Guedes, M. J., Vachot, C., & Kaushik, S. J. (2006). The effect of nucleic acids on growth, ureagenesis and nitrogen excretion of gilthead sea bream Sparus aurata juveniles. Aquaculture, 253(1- 4), 608-617. https://doi.org/10.1016/j. aquaculture.2005.09.010

Oliva-Teles, A., & Gonçalves, P. (2001). Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 202(3-4), 269- 278. https://doi.org/10.1016/S0044- 8486(01)00777-3

Olmos-Pérez, L., Roura, Á., Pierce, G. J., Boyer, S., & González, Á. F. (2017). Diet composition and variability of wild Octopus vulgaris and Alloteuthis media (Cephalopoda) paralarvae: A metagenomic approach. Frontiers in Physiology, 8, 321. https://doi.org/10.3389/fphys.2017.00321

Olsen, R. L., Toppe, J., & Karunasagar, I. (2014). Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends in Food Science & Technology, 36(2), 144-151. https://doi. org/10.1016/j.tifs.2014.01.007

Olukomaiya, O. O., Adiamo, O. Q., Fernando, W. C., Mereddy, R., Li, X., & Sultanbawa, Y. (2020). Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chemistry, 315, 126238. https://doi. org/10.1016/j.foodchem.2020.126238

Øverland, M., Tauson, A. H., Shearer, K., & Skrede, A. (2010). Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Archives of Animal Nutrition, 64(3), 171-189. https:// doi.org/10.1080/17450391003691534

Øverland, M., Mydland, L. T., & Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99(1), 13- 24. https://doi.org/10.1002/jsfa.9143

Palmer, P. J., Wang, S., Houlihan, A., & Brock, I. (2014). Nutritional status of a nereidid polychaete cultured in sand filters of mariculture wastewater. Aquaculture Nutrition, 20(6), 675-691. https://doi. org/10.1111/anu.12129

Pangestuti, R., & Kim, S. K. (2017). Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Marine Drugs, 15(3), 67. https:// doi.org/10.3390/md15030067

Pavithra, K. G., Kumar, P. S., Jaikumar, V., Vardhan, K. H., & SundarRajan, P. (2020). Microalgae for biofuel production and removal of heavy metals: A review. Environmental Chemistry Letters, 18(6), 1905-1923. https://doi. org/10.1007/s10311-020-01046-1

Peñalosa Martinell, D., Vergara‐Solana, F. J., Almendarez‐Hernández, L. C., & Araneda‐ Padilla, M. E. (2020). Econometric models applied to aquaculture as tools for sustainable production. Reviews in Aquaculture, 12(3), 1344-1359.

Pinotti, L., Ottoboni, M., Caprarulo, V., Giromini, C., Gottardo, D., Cheli, F., ... & Baldi, A. (2016). Microscopy in combination with image analysis for characterization of fishmeal material in aquafeed. Animal Feed Science and Technology, 215, 156-164. https://doi. org/10.1016/j.anifeedsci.2016.02.009

Pinotti, L., et al. (2019). Insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals. Animal, 13(7), 1365-1375. https://doi.org/10.1017/ S1751731118003622

Pleissner, D., Lam, W. C., Sun, Z., & Lin, C. S. K. (2013). Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource Technology, 137, 139-146. https://doi.org/10.1016/j. biortech.2013.03.088

Pombo, A., Baptista, T., Granada, L., Ferreira, S. M., Gonçalves, S. C., Anjos, C., ... & Costa, J. L. (2020). Insight into aquaculture’s potential of marine annelid worms and ecological concerns: A review. Reviews in Aquaculture, 12(1), 107-121. https://doi. org/10.1111/raq.12307

Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987- 992. DOI: 10.1126/science.aaq0216

Qiu, X., Neori, A., Kim, J. K., Yarish, C., Shpigel, M., Guttman, L., ... & Davis, D. A. (2018). Evaluation of green seaweed Ulva sp. as a replacement of fish meal in plant-based practical diets for Pacific white shrimp, Litopenaeus vannamei. Journal of Applied Phycology, 30(2), 1305-1316. https://doi.org/10.1007/s10811-017-1278-0

Rana, K. J., Siriwardena, S., & Hasan, M. R. (2009). Impact of rising feed ingredient prices on aquafeeds and aquaculture production (No. 541). Food and Agriculture Organization of the United Nations (FAO).

Ragaza, J. A., Hossain, M. S., Koshio, S., Ishikawa, M., Yokoyama, S., Kotzamanis, Y., ... & Kumar, V. (2021). Brown seaweed (Sargassum fulvellum) inclusion in diets with fishmeal partially replaced with soy protein concentrate for Japanese flounder (Paralichthys olivaceus) juveniles. Aquaculture Nutrition, 27(4), 1052-1064. https://doi.org/10.1111/ anu.13246

Rasidi, R., Jusadi, D., Setiawati, M., Yuhana, M., Zairin Jr, M., & Sugama, K. (2021). Dietary Supplementation of humic acid in the Feed of juvenile asian seabass, Lates calcarifer to counteract possible negative effects of Cadmium Accumulation on Growth and Fish Well‐being when Green Mussel (Perna viridis) is used as a Feed ingredient. Aquaculture Research, 52(6), 2550-2568. https://doi.org/10.1111/ are.15104

Riani, E., Cordova, M. R., & Arifin, Z. (2018). Heavy metal pollution and its relation to the malformation of green mussels cultured in Muara Kamal waters, Jakarta Bay, Indonesia. Marine Pollution Bulletin, 133, 664-670. https://doi.org/10.1016/j. marpolbul.2018.06.029

Richard, N., Costas, B., Machado, M., Fernández- Boo, S., Girons, A., Dias, J., ... & Skiba- Cassy, S. (2021). Inclusion of a protein-rich yeast fraction in rainbow trout plant-based diet: Consequences on growth performances, flesh fatty acid profile and health-related parameters. Aquaculture, 544, 737132. https://doi.org/10.1016/j. aquaculture.2021.737132

Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394-404. https://doi. org/10.1016/j.rser.2018.04.034

Rumbos, C. I., Karapanagiotidis, I. T., Mente, E., & Athanassiou, C. G. (2019). The lesser mealworm Alphitobius diaperinus: A noxious pest or a promising nutrient source? Reviews in Aquaculture, 11(4), 1418-1437. https://doi.org/10.1111/ raq.12300

Ryckebosch, E., Bruneel, C., Muylaert, K., & Foubert, I. (2012). Microalgae as an alternative source of omega‐3 long chain polyunsaturated fatty acids. Lipid Technology, 24(6), 128-130. https://doi. org/10.1002/lite.201200197

Sánchez-Muros, M. J., Barroso, F. G., & Manzano-Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: A review. Journal of Cleaner Production, 65, 16-27. https://doi. org/10.1016/j.jclepro.2013.11.068

Sarker, P. K., Kapuscinski, A. R., McKuin, B., Fitzgerald, D. S., Nash, H. M., & Greenwood, C. (2020a). Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Scientific Reports, 10(1), 1-14. https://doi.org/10.1038/s41598-020- 75289-x

Sarker, P. K., Kapuscinski, A. R., Vandenberg, G. W., Proulx, E., & Sitek, A. J. (2020b). Towards sustainable and ocean-friendly aquafeeds: Evaluating a fish-free feed for rainbow trout (Oncorhynchus mykiss) using three marine microalgae species. Elementa: Science of the Anthropocene, 8. https://doi. org/10.1525/elementa.404

Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W., Vogel, S., Heinz, V., Jäger, H., Bandick, N., Kulling, S., Knorr, D., Steinberg, P., & Engel, K. H. (2016). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition Food Research, 61, 1-14. https://doi.org/10.1111/j.1749- 7345.2010.00441.x

Sealey, W. M., Gaylord, T. G., Barrows, F. T., Tomberlin, J. K., McGuire, M. A., Ross, C., & St‐Hilaire, S. (2011). Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. Journal of the World Aquaculture Society, 42(1), 34-45. https:// doi.org/10.1111/j.1749-7345.2010.00441.x

Secci, G., Borgogno, M., Lupi, P., Rossi, S., Paci, G., Mancini, S., ... & Parisi, G. (2016). Effect of mechanical separation process on lipid oxidation in European aquacultured sea bass, gilthead sea bream, and rainbow trout products. Food Control, 67, 75-81. https:// doi.org/10.1016/j.foodcont.2016.02.033

Selvam, S. B. (2021). Proximate analysis of bait polychaetes from Port Dickson, Malaysia as prospectus replacement for aquaculture feed. International Journal of Forest, Animal and Fisheries Research (IJFAF), 5(1). https://dx.doi.org/10.22161/ijfaf.5.1.4

Shabani, A., Boldaji, F., Dastar, B., Ghoorchi, T., & Zerehdaran, S. (2018). Preparation of fish waste silage and its effect on the growth performance and meat quality of broiler chickens. Journal of the Science of Food and Agriculture, 98(11), 4097-4103. https:// doi.org/10.1002/jsfa.8926

Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Chowdhury, K., Parsaeimehr, A., ... & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of Applied Phycology, 30(1), 197-213. https://doi. org/10.1007/s10811-017-1234-z

Shahin, S., Okomoda, V. T., Ishak, S. D., Waiho, K., Fazhan, H., Azra, M. N., ... & Ikhwanuddin, M. (2023a). Lagoon amphipods as a new feed resource for aquaculture: A life history assessment of Grandidierella halophila. Journal of Sea Research, 102360. https://doi. org/10.1016/j.seares.2023.102360

Shahin, S., Okomoda, V. T., Ishak, S. D., Waiho, K., Fazhan, H., Azra, M. N., ... & Ikhwanuddin, M. (2023b). First report on the life history of the marine amphipod Ceradocus mizani and its implication for aquaculture. Invertebrate Biology, e12398. https://doi.org/10.1111/ivb.12398

Silva, S. S. D., & Davy, F. B. (2010). Aquaculture successes in Asia: Contributing to sustained development and poverty alleviation. In Success stories in Asian aquaculture (pp. 1-14). Dordrecht: Springer. DOI: 10.1007/978-90-481-3087-0_1

Silva, A. J., Cavalcanti, V. L. R., Porto, A. L. F., Gama, W. A., Brandão-Costa, R. M. P., & Bezerra, R. P. (2020). The green microalgae Tetradesmus obliquus (Scenedesmus acutus) as lectin source in the recognition of ABO blood type: Purification and characterization. Journal of Applied Phycology, 32(1), 103-110. https://doi. org/10.1007/s10811-019-01923-5

Sogari, G., Amato, M., Biasato, I., Chiesa, S., & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. Animals, 9(4), 119. https://doi. org/10.3390/ani9040119

Soler-Vila, A., Coughlan, S., Guiry, M. D., & Kraan, S. (2009). The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): Effects on growth, feed efficiency, and carcass composition. Journal of Applied Phycology, 21(5), 617-624. https://doi. org/10.1007/s10811-009-9423-z

Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., ... & De Smet, S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture, 97(8), 2594-2600. https://doi.org/10.1002/ jsfa.8081

Stamer, A., Wessels, S., Neidigk, R., & Hoerstgen-Schwark, G. (2014). Black soldier fly (Hermetia illucens) larvae-meal as an example for a new feed ingredients’ class in aquaculture diets.

Stentiford, G. D., Bateman, I. J., Hinchliffe, S. J., Bass, D., Hartnell, R., Santos, E. M., ... & Tyler, C. R. (2020). Sustainable aquaculture through the One Health lens. Nature Food, 1(8), 468-474. https:// doi.org/10.1038/s43016-020-0127-5

Storebakken, T., Baeverfjord, G., Skrede, A., Olli, J. J., & Berge, G. M. (2004). Bacterial protein grown on natural gas in diets for Atlantic salmon, Salmo salar, in freshwater. Aquaculture, 241(1- 4), 413-425. https://doi.org/10.1016/j. aquaculture.2004.07.024

Su, J., Gong, Y., Cao, S., Lu, F., Han, D., Liu, H., ... & Xie, S. (2017). Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish & Shellfish Immunology, 69, 59-66. https://doi. org/10.1016/j.fsi.2017.08.008

Suplicy, F. M. (2020). A review of the multiple benefits of mussel farming. Reviews in Aquaculture, 12(1), 204-223. https://doi. org/10.1111/raq.12313

Tacon, A. G., & Metian, M. (2015). Feed matters: Satisfying the feed demand of aquaculture. Reviews in Fisheries Science & Aquaculture, 23(1), 1-10. https://doi.org /10.1080/23308249.2014.987209

Tacon, A. G. (2020). Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science & Aquaculture, 28(1), 43-56. https://doi.or g/10.1080/23308249.2019.1649634

Tacon, A. G., Metian, M., & McNevin, A. A. (2022). Future feeds: Suggested guidelines for sustainable development. Reviews in Fisheries Science & Aquaculture, 30(2), 271-279. https://doi.org/10.1080/23308249 .2021.1898539

Tilami, S. K., Turek, J., Červený, D., Lepič, P., Kozák, P., Burkina, V., ... & Mráz, J. (2020). Insect meal as a partial replacement for fish meal in a formulated diet for perch perca fluviatilis. Turkish Journal of Fisheries and Aquatic Sciences, 20(12), 867-878. DOI: 10.4194/1303-2712-v20_12_03

Tlusty, M., Rhyne, A., Szczebak, J. T., Bourque, B., Bowen, J. L., Burr, G., ... & Feinberg, L. (2017). A transdisciplinary approach to the initial validation of a single cell protein as an alternative protein source for use in aquafeeds. PeerJ, 5, e3170. https://doi. org/10.7717/peerj.3170

Tschirley, D., Reardon, T., Dolislager, M., & Snyder, J. (2015). The rise of a middle class in East and Southern Africa: Implications for food system transformation. Journal of International Development, 27(5), 628- 646. https://doi.org/10.1002/jid.3107

United Nations, Department of Economic and Social Affairs, Population Division. (2022). World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/ TR/NO. 3.

USEPA. (2012). Food Waste. Retrieved Feb 10th, 2016, from http://www.epa.gov/osw/ conserve/materials/organics/food/

Van De Lagemaat, J., & Pyle, D. L. (2001). Solid state fermentation and bioremediation: Development of a continuous process for the production of fungal tannase. Chemical Engineering Journal, 84, 115-123. https:// doi.org/10.1016/S1385-8947(01)00196-6

Vandeweyer, D., Wynants, E., Crauwels, S., Verreth, C., Viaene, N., Claes, J., ... & Van Campenhout, L. (2018). Microbial dynamics during industrial rearing, processing, and storage of tropical house crickets (Gryllodes sigillatus) for human consumption. Applied and Environmental Microbiology, 84(12), e00255-18. https:// doi.org/10.1128/AEM.00255-18

Van Huis, A., & Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 1-14. https://doi.org/10.1007/s13593-017-0452-8

Van Huis, A. V., Itterbeeck, J. V., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: Future prospects for food and feed security. FAO Forestry Paper, (171).

Vargas-Abúndez, J. A., López-Vázquez, H. I., Mascaró, M., Martínez-Moreno, G. L., & Simões, N. (2021). Marine amphipods as a new live prey for ornamental aquaculture: Exploring the potential of Parhyale hawaiensis and Elasmopus pectenicrus. PeerJ, 9, e10840. https://doi. org/10.7717/peerj.10840

Vidakovic, A., Huyben, D., Sundh, H., Nyman, A., Vielma, J., Passoth, V., ... & Lundh, T. (2020). Growth performance, nutrient digestibility and intestinal morphology of rainbow trout (Oncorhynchus mykiss) fed graded levels of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus. Aquaculture Nutrition, 26(2), 275-286. https://doi.org/10.1111/anu.12988

Viegas, C., Gouveia, L., & Gonçalves, M. (2021). Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. Journal of Environmental Management, 286, 112187. https://doi. org/10.1016/j.jenvman.2021.112187

Villamil, O., Váquiro, H., & Solanilla, J. F. (2017). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry, 224, 160-171. https://doi. org/10.1016/j.foodchem.2016.12.057

Vucko, M. J., Cole, A. J., Moorhead, J. A., Pit, J., & de Nys, R. (2017). The freshwater macroalga Oedogonium intermedium can meet the nutritional requirements of the herbivorous fish Ancistrus cirrhosus. Algal Research, 27, 21-31. https://doi. org/10.1016/j.algal.2017.08.020

Wan, A. H., Davies, S. J., Soler‐Vila, A., Fitzgerald, R., & Johnson, M. P. (2019). Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture, 11(3), 458-492. https://doi.org/10.1111/raq.12241

Wang, M., & Jeffs, A. G. (2014). Nutritional composition of potential zooplankton prey of spiny lobster larvae: A review. Reviews in Aquaculture, 6(4), 270-299. https://doi. org/10.1111/raq.12044

Wang, H., Seekamp, I., Malzahn, A., Hagemann, A., Carvajal, A. K., Slizyte, R., ... & Reitan, K. I. (2019). Growth and nutritional composition of the polychaete Hediste diversicolor (OF Müller, 1776) cultivated on waste from land-based salmon smolt aquaculture. Aquaculture, 502, 232-241. https://doi.org/10.1016/j. aquaculture.2018.12.047

Wang, Y., Tao, S., Liao, Y., Lian, X., Luo, C., Zhang, Y., ... & Yang, Y. (2020). Partial fishmeal replacement by mussel meal or meat and bone meal in low‐fishmeal diets for juvenile Ussuri catfish (Pseudobagrus ussuriensis): Growth, digestibility, antioxidant capacity and IGF‐I gene expression. Aquaculture Nutrition, 26(3), 727-736. https://doi.org/10.1111/anu.13032

Wassef, E. A., El-Sayed, A. F. M., & Sakr, E. M. (2013). Pterocladia (Rhodophyta) and Ulva (Chlorophyta) as feed supplements for European seabass, Dicentrarchus labrax L., fry. Journal of Applied Phycology, 25(5), 1369-1376. https://doi.org/10.1007/s10811- 013-9995-5

Ween, O., Stangeland, J. K., Fylling, T. S., & Aas, G. H. (2017). Nutritional and functional properties of fishmeal produced from fresh by-products of cod (Gadus morhua L.) and saithe (Pollachius virens). Heliyon, 3(7), e00343. https://doi. org/10.1016/j.heliyon.2017.e00343

Weiss, M., & Buck, B. H. (2017). Partial replacement of fishmeal in diets for turbot (Scophthalmus maximus, Linnaeus, 1758) culture using blue mussel (Mytilus edulis, Linneus, 1758) meat. Journal of Applied Ichthyology, 33(3), 354-360. https://doi. org/10.1111/jai.13323

Westendorf, M. L. (2000). Food waste as animal feed: An introduction. Food Waste to Animal Feed, 3-16. DOI:10.1002/9780470290217

Weththasinghe, P., Hansen, J. Ø., Nøkland, D., Lagos, L., Rawski, M., & Øverland, M. (2021). Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 530, 735785. https://doi.org/10.1016/j. aquaculture.2020.735785

Wong, M. H., Mo, W. Y., Choi, W. M., Cheng, Z., & Man, Y. B. (2016). Recycle food wastes into high quality fish feeds for safe and quality fish production. Environmental Pollution, 219, 631-638. https://doi. org/10.1016/j.envpol.2016.06.035

Woods, C. M. (2009). Caprellid amphipods: An overlooked marine finfish aquaculture resource? Aquaculture, 289(3-4), 199-211. https://doi.org/10.1016/j. aquaculture.2009.01.018

World Commission on Environment and Development. (1987). Our common future. Oxford, England: Oxford University Press.

Wu, L. C., Ho, J. A. A., Shieh, M. C., & Lu, I. W. (2005). Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. Journal of Agricultural and Food Chemistry, 53(10), 4207-4212. https://doi. org/10.1021/jf0479517

Wu, X., He, K., Velickovic, T. C., & Liu, Z. (2021). Nutritional, functional, and allergenic properties of silkworm pupae. Food Science & Nutrition, 9(8), 4655-4665. https://doi. org/10.1002/fsn3.2428

Xiao, Y., Bai, X., Ouyang, Z., Zheng, H., & Xing, F. (2007). The composition, trend and impact of urban solid waste in Beijing. Environmental Monitoring and Assessment, 135(1), 21-30. https://doi. org/10.1007/s10661-007-9708-0

Xiong, J., Jin, M., Yuan, Y., Luo, J. X., Lu, Y., Zhou, Q. C., ... & Tan, Z. L. (2018). Dietary nucleotide‐rich yeast supplementation improves growth, innate immunity and intestinal morphology of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 24(5), 1425-1435. https://doi.org/10.1111/ anu.12679

Xu, X., Ji, H., Belghit, I., & Sun, J. (2020). Black soldier fly larvae as a better lipid source than yellow mealworm or silkworm oils for juvenile mirror carp (Cyprinus carpio var. specularis). Aquaculture, 527, 735453. https://doi.org/10.1016/j. aquaculture.2020.735453

Xue, S., Mao, Y., Li, J., Zhu, L., Fang, J., & Zhao, F. (2018). Life history responses to variations in temperature by the marine amphipod Eogammarus possjeticus (Gammaridae) and their implications for productivity in aquaculture. Hydrobiologia, 814(1), 133- 145.

Xue, S., Ding, J., Li, J., Jiang, Z., Fang, J., Zhao, F., & Mao, Y. (2021). Effects of live, artificial and mixed feeds on the growth and energy budget of Penaeus vannamei. Aquaculture Reports, 19, 100634. https://doi. org/10.1016/j.aqrep.2021.100634

Yi, L., Lakemond, C. M., Sagis, L. M., Eisner- Schadler, V., van Huis, A., & van Boekel, M. A. (2013). Extraction and characterisation of protein fractions from five insect species. Food Chemistry, 141(2013), 3341-3348. https://doi.org/10.1016/j. foodchem.2013.05.115

Yi, X., Li, J., Xu, W., Zhou, H., Smith, A. A., Zhang, W., & Mai, K. (2015). Shrimp shell meal in diets for large yellow croaker Larimichthys croceus: Effects on growth, body composition, skin coloration and anti-oxidative capacity. Aquaculture, 441, 45-50. https://doi.org/10.1016/j. aquaculture.2015.01.030

Yin, G., Li, W., Lin, Q., Lin, X., Lin, J., Zhu, Q., ... & Huang, Z. (2014). Dietary administration of laminarin improves the growth performance and immune responses in Epinephelus coioides. Fish & Shellfish Immunology, 41(2), 402-406. https://doi. org/10.1016/j.fsi.2014.09.027

Yue, K., & Shen, Y. (2022). An overview of disruptive technologies for aquaculture. Aquaculture and Fisheries, 7(2), 111-120. https://doi. org/10.1016/j.aaf.2021.04.009

Zu Ermgassen, E. K., Phalan, B., Green, R. E., & Balmford, A. (2016). Reducing the land use of EU pork production: Where there’s swill, there’s a way. Food Policy, 58, 35-48. https:// doi.org/10.1016/j.foodpol.2015.11.001

Downloads

Published

2023-07-31

How to Cite

SHARIF SHAHIN, & ABDULLAH, M. I. . (2023). SUSTAINABLE ALTERNATIVE FEED FOR AQUACULTURE: STATE OF THE ART AND FUTURE PERSPECTIVE. Planetary Sustainability, 1(1), 62–96. https://doi.org/10.46754/ps.2023.07.005