Effects of Exogenous Arachidonic Acid on Morphological Traits and Fatty Acid Profile of Rice (Oryza sativa L.) Grown on Saline Soil
DOI:
https://doi.org/10.46754/umtjur.v1i3.80Keywords:
arachidonic acid, panicle, spikelet, polyunsaturated fatty acid, Oryza sativaAbstract
Salinity is one of the major constraints in the rice production worldwide. Rice plants have moderate tolerance towards salinity. Salinity changes cell membrane permeability and fatty acid compositions by releasing the free fatty acids. Nonetheless, the effect of exogenous fatty acid such as arachidonic acid (AA) on rice grown on saline soil is yet unknown. The objective of the current study is to determine the effect of AA on the morphological traits and free fatty acids of rice plant grown under saline conditions. Rice plants grown on saline soil (EC=12 ds/m) were treated with 50 mM AA on day 45 after transplant. Leaves and panicles were sampled after two weeks of treatment and analysed for fatty acid profile using GC-MS. The morphological traits were observed at the maturity stage. Results showed that AA treatment improved the grain fill-in of the saline stress rice and reduced the accumulation of free fatty acids in the cell. The AA treatment also increased the linoleic acid (18:2), linolenic acid (18:3) in panicles and, dihomo-y-linolenic acid (20:3) and nervonic acid (24:1) in leaves. The finding suggests that exogenous AA regulates salinity stress in rice by reducing the accumulation of free fatty acids.
References
Adam, O., Tesche, A., & Wolfram, G. (2008). Impact of linoleic acid intake on arachidonic acid formation and eicosanoid biosynthesis in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids, 79(3–5), 177–181. https://doi.org/10.1016/j.plefa.2008.09.007
Adjepong, M., Valentini, K., Pickens, C. A., Li, W., Appaw, W., & Fenton, J. (2017). Quantification of fatty acid and mineral levels of selected seeds, nuts, and oils in Ghana. Journal of Food Composition and Analysis, 59, 43–49. https://doi.org/10.1016/j.jfca.2017.02.007
Aguilar, M., Fernández-Ramírez, J. L., Aguilar-Blanes, M., & Ortiz-Romero, C. (2017). Rice sensitivity to saline irrigation in Southern Spain. Agricultural Water Management, 188, 21–28. https://doi.org/10.1016/j.agwat.2017.03.027
Ali, Y., Aslam, Z., Ashraf, M. Y., & Tahir, G. R. (2004). Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science & Technology, 1(3), 221–225. https://doi.org/10.1007/BF03325836
Amacher, J. K., Koening, R., & Kitchen, B. (2000). Salinity and Plant Tolerance. All Archived Publications. Retrieved from http://digitalcommons.usu.edu/extension_histall/43
Aziz, A., Siti Fairuz, Abdullah, M. Z., Marziah, M., & Nyuk Ling, M. (2015). Fatty acid profile of salinity tolerant rice genotypes grown on saline soil. Malaysian Applied Biology, 44(1), 119–124.
Balkan, A., Genctan, T., Bilgin, O., & Ulukan, D. H. (2015). Response of rice (Oryza sativa L.) to salinity stress at germination and early seedling stages. Pakistan Journal of Agricultural Sciences, 52, 455–461.
Browse, J. (2009). The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry, 70(13–14), 1539–1546. https://doi.org/10.1016/j.phytochem.2009.08.004
Cai, Q., Yuan, Z., Chen, M., Yin, C., Luo, Z., Zhao, X., … Zhang, D. (2014). Jasmonic acid regulates spikelet development in rice. Nature Communications, 5. https://doi.org/10.1038/ncomms4476
Cha, T. S., Chen, J. W., Goh, E. G., Aziz, A., & Loh, S. H. (2011). Differential regulation of fatty acid biosynthesis in two Chlorella species in response to nitrate treatments and the potential of binary blending microalgae oils for biodiesel application. Bioresource Technology, 102(22), 10633–10640. https://doi.org/10.1016/j.biortech.2011.09.042
Conconi, A., Miquel, M., Browse, J. A., & Ryan, C. A. (1996). Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiology, 111(3), 797–803.
Dasgupta, S., Hossain, M. M., Huq, M., & Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44(8), 815–826. https://doi.org/10.1007/s13280-015-0681-5.
Garcia-Pineda, E., & Lozoya-Gloria, E. (1999). Induced gene expression of 1-aminocyclopropane-1-carboxylic acid (ACC oxidase) in pepper (Capsicum annuum L.) by arachidonic acid. Plant Science, 145(1), 11–21. https://doi.org/10.1016/S0168-9452(99)00065-5.
Ghosh, B., Ali, Md. N., & Saikat, G. (2016). Response of rice under salinity stress: A Review Update. J Res Rice 4:167. doi: 10.4172/2375-4338.1000167
Fonseca, S., Chico, J. M., & Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 12(5), 539–547. https://doi.org/10.1016/j.pbi.2009.07.013
Hou, J., Wang, H., Fu, B., Zhu, L., Wang, Y., & Li, Z. (2016). Effects of plant diversity on soil erosion for different vegetation patterns. CATENA, 147, 632–637. https://doi.org/10.1016/j.catena.2016.08.019
Huai, D., Zhang, Y., Zhang, C., Cahoon E.B., & Zhou, Y. (2015). Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in Camelina sativa. PLoS ONE 10(6): e0131755. https://doi.org/10.1371/journal.pone.0131755
Huang, L., Liu, X., Wang, Z., Liang, Z., Wang, M., Liu, M., & Suarez, D. L. (2017). Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agricultural Water Management, 194, 48–57. https://doi.org/10.1016/j.agwat.2017.08.012
Khan, M. S. A., Hamid, A., & Karim, M. A. (1997). Effect of sodium chloride on germination and seedling characters of different types of rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 179(3), 163–169. https://doi.org/10.1111/j.1439-037X.1997.tb00512.x
Kibria, M. G., Hossain, M., Murata, Y., & Hoque, M. A. (2017). Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Science, 24(3), 155–162. https://doi.org/10.1016/j.rsci.2017.05.001
Küpper, F. C., Gaquerel, E., Cosse, A., Adas, F., Peters, A. F., Müller, D. G., … Potin, P. (2009). Free fatty acids and methyl-jasmonate trigger defense reactions in Laminaria digitata. Plant and Cell Physiology, 50(4), 789–800. https://doi.org/10.1093/pcp/pcp023
Lyons, R., Manners, J. M., & Kazan, K. (2013). Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Reports, 32(6), 815–827. https://doi.org/10.1007/s00299-013-1400-y
Mansour, M. M. F. (2013). Plasma membrane permeability as an indicator of salt tolerance in plants. Biologia Plantarum, 57(1), 1–10. https://doi.org/10.1007/s10535-012-0144-9
Reddy, I. N. B. L., Kim, B.-K., Yoon, I.-S., Kim, K.-H., & Kwon, T.-R. (2017). Salt tolerance in rice: Focus on mechanisms and approaches. Rice Science, 24(3), 123–144. https://doi.org/10.1016/j.rsci.2016.09.004
Reddy, N., & Crohn, D. M. (2014). Effects of soil salinity and carbon availability from organic amendments on nitrous oxide emissions. Geoderma, 235–236, 363–371. https://doi.org/10.1016/j.geoderma.2014.07.022.
Roualdes, S., & Rouessac, V. (2017). 1.10 Plasma Membranes. In Comprehensive Membrane Science and Engineering (Second Edition) (pp. 236–269). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.12224-3
Sacała, E., Biegun, A., Demczuk, A., & Grzyś, E. (2011). Effect of NaCI and supplemental calcium on growth parameters and nitrate reductase activity in maize. Acta Societatis Botanicorum Poloniae, 74(2), 119–123. https://doi.org/10.5586/asbp.2005.016
Salama, K. H. A., Mansour, M. M. F., Ali, F. Z. M., & Abou-hadid, A. F. (2007). NaCl-induced changes in plasma membrane lipids and proteins of Zea mays L. cultivars differing in their response to salinity. Acta Physiologiae Plantarum, 29(4), 351–359. https://doi.org/10.1007/s11738-007-0044-3
Schaller, F., Schaller, A., & Stintzi, A. (2004). Biosynthesis and metabolism of Jasmonates. Journal of Plant Growth Regulation, 23(3), 179–199. https://doi.org/10.1007/s00344-004-0047-x
Scholz, S. S., Reichelt, M., Boland, W., & Mithöfer, A. (2015). Additional evidence against jasmonate-induced jasmonate induction hypothesis. Plant Science, 239, 9–14. https://doi.org/10.1016/j.plantsci.2015.06.024.
Sui, N., Wang, Y., Liu, S., Yang, Z., Wang, F., & Wan, S. (2018). Transcriptome and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. Frontier Plant Science, 9:7, doi:10.3389/fpls.2018.00007
Tadesse Gi, B., Mohammed A, H., & Assefa Geb, A. (2017). Effect of Salinity on Final Growth Stage of Different Rice (Oryza sativa L.) Genotypes. Asian Journal of Agricultural Research, 11(1), 1–9. https://doi.org/10.3923/ajar.2017.1.9
Tanaka, W., Toriba, T., & Hirano, H.-Y. (2014). Flower Development in Rice. In: F. Fornara (Ed.), Advances in Botanical Research (Vol. 72, pp. 221–262). Academic Press. https://doi.org/10.1016/B978-0-12-417162-6.00008-0
Tarakcioglu, C., & Inal, A. (2002). Changes induced by salinity, demarcating specific ion ratio and osmolity in ion and proline accumulation, and growth perfomance of lettuce. Journal of Plant Nutrition, 25(1), 27–41. https://doi.org/10.1081/PLN-100108778
Tian, J., Ji, H., Oku, H., & Zhou, J. (2014). Effects of dietary arachidonic acid (ARA) on lipid metabolism and health status of juvenile grass carp, Ctenopharyngodon idellus. Aquaculture, 430, 57–65. https://doi.org/10.1016/j.aquaculture.2014.03.020.
Wei, H., Meng, T., Li, X., Dai, Q., Zhang, H., & Yin, X. (2018). Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Research, 215, 23-38. https://doi.org/10.1016/j.fcr.2017.09.029
Yuan, Z., & Zhang, D. (2015). Roles of jasmonate signalling in plant inflorescence and flower development. Current Opinion in Plant Biology, 27, 44–51. https://doi.org/10.1016/j.pbi.2015.05.024
Zeng, L., & Shannon, M. C. (2000). Salinity effects on seedling growth and yield components of rice, 40(4), 996–1003. https://doi.org/10.2135/cropsci2000.404996x
Zeng, L., Shannon, M. C., & Lesch, S. M. (2001). Timing of salinity stress affects rice growth and yield components. Agricultural Water Management, 48(3), 191–206. https://doi.org/10.1016/S0378-3774(00)00146-3