Effects of Rose-water on the Total Phenol and Flavonoid Content and Radical Scavenger Activity in Fermented Broth with Komagataeibacter xylinus

Authors

  • WAN AINUR AISYAH WAN AZMAR University of Malaysia Terengganu
  • AZILA ADNAN Universiti Malaysia Terengganu
  • AZIZ AHMAD Universiti Malaysia Terengganu

DOI:

https://doi.org/10.46754/umtjur.v6i4.503

Keywords:

Bacteria, broth, fermentation, Rose

Abstract

Komagataeibacter xylinus is a cellulose-producing bacteria. This bacteria is known to be symbiotic with yeast associated with yeast and kombucha production. Several herbs and spices are commonly added during the fermentation process to enhance the flavour of kombucha. Nevertheless, the efficiency of rose water on the quality of kombucha remains limited.  Therefore, the current study aims to determine the effect of rose water derived from petals of Bishop’s Castle species on the total phenolic, flavonoid and radical scavenging activity of the broth rose. The K. xylinus was inoculated to various concentrations of rose water (0 to 100% v/v) and analysed for the chemical compound and scavenging activity after fermentation for 15 days. The results showed that bacterial growth, total phenolic and flavonoid content, as well as radical scavenging activity decreased with the concentrations of rose water applied in the culture medium. The highest total phenol (0.07 mg/ml) and flavonoid (0.07 mg/ml) content was obtained from broth containing 20 % (v/v) rose water. The radical scavenging activity was comparable to the control medium in treatment containing lower concentrations (20 to 60 % v/v) of rose water. In conclusion, biologically active chemicals in the rose water might inhibit the growth of bacteria and contribute to the total content of analysed secondary metabolites in the broth. Further study should be carried out to determine the effects of lower concentrations and a variety of rose water applied after the bacteria attained the growth phase.

References

Abaci, N., Deniz, F. S. S., & Orhan, I. E. (2022). Kombucha – An ancient fermented beverage with desired bioactivities: A narrowed review. Food Chemistry, 10, 14, Article 100302. https://doi.org/10.1016/j. fochx.2022.100302 DOI: https://doi.org/10.1016/j.fochx.2022.100302

Agarwal, P., Sebghatollahi, Z., Kamal, M., Dhyani, A., Shrivastava, A., Singh, K. K., Sinha, M., Mahato, N., Mishra, A. K., & Baek, K. H. (2022). Citrus essential oils in aromatherapy: Therapeutic effects and mechanisms. Antioxidants, 11(12), Article 2374. https://doi.org/10.3390/antiox111223 74 DOI: https://doi.org/10.3390/antiox11122374

Antolak, H., Piechota, D., & Kucharska, A. (2021). Kombucha tea - A double power of bioactive compounds from tea and a symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants, 10(10), Article 1541. https://doi.org/10.3390/ antiox10101541 DOI: https://doi.org/10.3390/antiox10101541

Arıkan, M., Mitchell, A. L., Finn, R. D., & Gürel, F. (2020). The microbial composition of Kombucha was determined using amplicon sequencing and shotgun metagenomics. Journal of Food Science, 85(2), 455-464. https://doi.org/10.1111/1750-3841.14992 DOI: https://doi.org/10.1111/1750-3841.14992

Bodea, I. M., Cătunescu, G. M., Pop, C. R., Fiț N. I., David, A. P., Dudescu, M. C., Stănilă, A., Rotar, A. M., Beteg, F. I. (2022). Antimicrobial properties of bacterial cellulose films enriched with bioactive herbal extracts obtained by microwave-assisted extraction. Polymers, 14(7), Article 1435. https://doi.org/10.1111/1750- 3841.14992 DOI: https://doi.org/10.3390/polym14071435

Butkevičiūtė, A., Urbštaitė, R., Liaudanskas, M., Obelevičius, K., & Janulis, V. (2022). Phenolic content and antioxidant activity in fruit of the Genus Rosa L. Antioxidants, 11(5), Article 912. https://doi.org/10.3390/ antiox11050912 DOI: https://doi.org/10.3390/antiox11050912

Kochman, J., Jakubczyk, K., Antoniewicz, J., Mruk, H., & Janda, K. (2020). Health benefits and chemical composition of matcha green tea: A review. Molecules, 26(1), Article 85. https://doi.org/10.3390/ molecules26010085 DOI: https://doi.org/10.3390/molecules26010085

Lahiri, D., Nag, M., Dutta, B., Dey, A., Sarkar, T., Pati, S., Edinur, H. A., Abdul Kari, Z., Mohd Noor, N. H., & Ray, R. R. (2021). Bacterial cellulose: Production, characterisation, and application as antimicrobial agent. International Journal of Molecular Sciences, 22(23), Article 12984. https://doi. org/10.3390/ijms222312984 DOI: https://doi.org/10.3390/ijms222312984

Leonarski, E., Cesca, K., Zanella, E., Stambuk, B. U., & de Oliveira, D. (2021). Production of kombucha-like beverage and bacterial cellulose by acerola by product as raw material. Food Science and Technology, 135, Article 110075. https://doi.org/10.1016/j. lwt.2020.110075 DOI: https://doi.org/10.1016/j.lwt.2020.110075

Morales, F. J., & Jiménez-Pérez, S. (2001). The free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry 72(1), 119- 125. DOI: https://doi.org/10.1016/S0308-8146(00)00239-9

Odriozola-Serrano, I., Nogueira, D. P., Esparza, I., Vaz, A. A., Jiménez-Moreno, N., Martín- Belloso, O., & Ancín-Azpilicueta, C. (2023). Stability and bioaccessibility of phenolic compounds in rosehip extracts during in vitro digestion. Antioxidants, 12(5), Article 1035. https://doi.org/10.3390/ antiox12051035 DOI: https://doi.org/10.3390/antiox12051035

Rahmani, R., Beaufort, S., Villarreal-Soto, S. A., Taillandier, P., Bouajila, J., & Debouba, M. (2019). Kombucha fermentation of African mustard (Brassica tournefortii) leaves chemical composition and bioactivity. Food Bioscience, 30, Article 100414. https://doi. org/10.1016/j.fbio.2019.100414 DOI: https://doi.org/10.1016/j.fbio.2019.100414

Ren, J., Yang, L., Wang, Y., & Yao, H. (2016). Chemical profile of floral scent at different flower developmental stages of rose (Rosa damascena Mill.) cultivated in Beijing. Journal of Essential Oil-Bearing Plants, 19(2), 433-443. http://dx.doi.org/10.1080/0 972060X.2014.890081 DOI: https://doi.org/10.1080/0972060X.2014.890081

Revin, V., Liyaskina, E., Nazarkina, M., Bogatyreva, A., & Shchankin, M. (2018). Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, 49, 151-159. https://doi. org/10.1016/j.bjm. 2017.12.012 DOI: https://doi.org/10.1016/j.bjm.2017.12.012

Sadraei, H., Asghari, G., & Emami, S. (2013). Inhibitory effect of Rosa damascena Mill. flower essential oil, geraniol, and citronellol on rat ileum contraction. Research in Pharmaceutical Science, 8(1), 17-23. https://pubmed.ncbi.nlm.nih. gov/24459472/

Sagen, A. (2023). Hestrin-Schramm (HS) medium. protocols.io. https://dx.doi. org/10.17504/protocols.io.eq2ly7xyelx9/v1 DOI: https://doi.org/10.17504/protocols.io.eq2ly7xyelx9/v1

Salem, M. A., Perez de Souza, L., Serag, A., Fernie, A. R., Farag, M. A., Ezzat, S. M., & Alseekh, S. (2020). Metabolomics in the context of plant natural products research: From sample preparation to metabolite analysis. Metabolites, 10(1), 37. https://doi. org/10.3390/metabo10010037 DOI: https://doi.org/10.3390/metabo10010037

Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L. C., Bacabac, R. G., & Klein-Nulend, J. (2021). Cellulose and its derivatives: Towards biomedical applications. Cellulose, 28(4), 1893-1931. https://doi.org/10.1007/s10570-020- 03674-w DOI: https://doi.org/10.1007/s10570-020-03674-w

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi. org/10.5344/ajev.1965.16.3.144 DOI: https://doi.org/10.5344/ajev.1965.16.3.144

Yamin, R., Mistriyani, S., Ihsan, S., Armadany, F. I., Sahumena, M. H., & Fatimah, W. O. N. (2021). Determination of total phenolic and flavonoid contents of Jackfruit peel and in vitro antiradical test. Food Research, 5(1), 84-90. https://doi.org/10.26656/fr.2017.5(1).350 DOI: https://doi.org/10.26656/fr.2017.5(1).350

Zhao, Y. S., Eweys, A. S., Zhang, J. Y., Zhu, Y., Bai, J., Darwesh, O. M., Zhang, H. B., & Xiao, X. (2021). Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants, 10(12), Article 2004. https:// doi.org/10.3390/antiox10122004 DOI: https://doi.org/10.3390/antiox10122004

Zubaidah, E., Dewantari, F. J., Novitasari, F. R., Srianta, I., & Blanc, P. J. (2018). The potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the kombucha consortium. Biocatalysis and Agricultural Biotechnology, 13, 198-203. https://doi.org/10.1016/j.bcab.2017.12.012 DOI: https://doi.org/10.1016/j.bcab.2017.12.012

Additional Files

Published

2024-10-30

How to Cite

WAN AZMAR, W. A. A. ., ADNAN, A. ., & AHMAD, A. . (2024). Effects of Rose-water on the Total Phenol and Flavonoid Content and Radical Scavenger Activity in Fermented Broth with Komagataeibacter xylinus . Universiti Malaysia Terengganu Journal of Undergraduate Research, 6(4), 1–8. https://doi.org/10.46754/umtjur.v6i4.503