LEAF MICROMORPHOLOGY IN GENUS Alpinia (ZINGIBERACEAE)
DOI:
https://doi.org/10.46754/umtjur.v6i1.451Keywords:
Epidermal Cells, Light Microscope, Morphology, Stomata, TrichomesAbstract
Leaf epidermal characteristics are essential for phylogenetic and taxonomic studies of many plants. Among the family Zingiberaceae, Alpinia is recorded as the largest genus. This study aimed to identify the leaf micromorphological characteristics of the genus Alpinia that can be used in species identification as supportive data in classification and also to determine the taxonomic value of their micromorphological characteristics. In fact, the genus Alpinia has been studied less in Malaysia and requires more supporting data for species identification. Hence, a study has been conducted on eight species of Alpinia, which are Alpinia assimilis, A. javanica, A. ligulata, A. malaccensis, A. mutica, A. pahangensis, A. petiolata, and A. rafflesiana. Characters such as epidermal cell shape, trichomes, and stomatal type and distribution were observed. The result from this study suggests that all the species studied are amphistomatic, which means the stomata are present in both the abaxial and adaxial surfaces of the leaf. All the stomas in the species studied are tetracytic. However, trichomes on the leaf surface can only be discovered in A. assimilis, A. malaccensis, A. rafflesiana, and A. pahangensis. Notably, all the trichomes possessed simple and unicellular types. In conclusion, studies on leaf micromorphology in the genus Alpinia have taxonomic significance and can be used in species identification and classification, especially at the species level.
References
Alfaro-Vargas, P., Bastos-Salas, A., Muñoz- Arrieta, R., Pereira-Reyes, R., Redondo- Solano, M., Fernández, J., & López- Gómez, J. P. (2022). Peptaibol production and characterization from Trichoderma asperellum and their action as biofungicide. Journal of Fungi, 8(10), 1037. DOI: https://doi.org/10.3390/jof8101037
Alijani, Z., Amini, J., Ashengroph, M., Bahramnejad, B. (2019). Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. International Journal Food Microbiology, 307, 108276. DOI: https://doi.org/10.1016/j.ijfoodmicro.2019.108276
Arroyave-Toro, J. J., Mosquera, S., & Villegas- Escobar, V. (2017). Biocontrol activity of Bacillus subtilis EA-CB0015 cells and lipopeptides against postharvest fungal pathogens. Biological Control, 114, 195- 200. DOI: https://doi.org/10.1016/j.biocontrol.2017.08.014
Bhagya, N., Sheik, S., Sharma, M. S., & Chandrashekar, K. R. (2011). Isolation of endophytic Colletotrichum gloeosporioides Penz. from Salacia chinensis and its antifungal sensitivity. Journal of Phytology, 3(6), 20-22.
Choudhary, D. K., & Johri, B.N. (2009). Interactions of Bacillus spp., and plants-with special reference to induced systemic resistance (ISR). Microbiology Resistance, 164, 493-513. https://doi.org/10.1016/j. micres.2008.08.007 DOI: https://doi.org/10.1016/j.micres.2008.08.007
Choudhary, B., Nagpure, A., & Gupta, R. K. (2014). Fungal cell‐wall lytic enzymes, antifungal metabolite(s) production, and characterization from Streptomyces exfoliatus MT9 for controlling fruit‐rotting fungi. Journal of Basic Microbiology, 54(12), 1295-1309. https://doi.org/10.1002/ jobm.201400380 DOI: https://doi.org/10.1002/jobm.201400380
Chung, P. C., Wu, H. Y., Wang, Y. W., Ariyawansa, H. A., Hu, H. P., Hung, T. H., ... & Chung, C. L. (2020). Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. Scientific Reports, 10(1), 14664. https://doi. org/10.1038/s41598-020-70878-2 DOI: https://doi.org/10.1038/s41598-020-70878-2
Cortaga, C. Q., Cordez, B. W. P., Dacones, L. S., Balendres, M. A. O., & Dela Cueva, F. M. (2023). Mutations associated with fungicide resistance in Colletotrichum species: A Review. Phytoparasitica, 51(3), 569-592. DOI: https://doi.org/10.1007/s12600-023-01063-0
Evangelista-Martínez, Z. (2014). Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World Journal of Microbiology and Biotechnology, 30, 1639-1647. https://doi. org/10.1007/s11274-013-1568-x DOI: https://doi.org/10.1007/s11274-013-1568-x
Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O’Connell, R.J., Narusaka, Y., Takano, Y., Kubo, Y. & Shirasu, K. (2013). Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist, 197(4), 1236-1249. https://doi.org/10.1111/ nph.12085 DOI: https://doi.org/10.1111/nph.12085
Granada, D., Lopez-Lujan, L., Ramirez- Restrepo, S., Morales, J., Pelaez-Jaramillo, C., Andrade, G., & Carlos Bedoya-Perez, J. (2020). Bacterial extracts and bioformulates as a promising control of fruit body rot and root rot in avocado cv. Hass. Journal of Integrative Agriculture, 19, 748758. DOI: https://doi.org/10.1016/S2095-3119(19)62720-6
Guo, C., Dang, Z., Wong, Y., & Tam, N. F. (2010). Biodegradation ability and dioxgenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. International Biodeterioration & Biodegradation, 64(6), 419-426. DOI: https://doi.org/10.1016/j.ibiod.2010.04.008
Hassine, M., Aydi-Ben-Abdallah, R., Jabnoun- Khireddine, H., & Daami-Remadi, M. (2022). Soil-borne and compost-borne Penicillium sp. and Gliocladium spp. as potential microbial biocontrol agents for the suppression of anthracnose-induced decay on tomato fruits. Egyptian Journal of Biological Pest Control, 32(1), 20. https:// doi.org/10.1186/s41938-022-00519-5 DOI: https://doi.org/10.1186/s41938-022-00519-5
Ishii, H., & Holloman, D. (2015). Fungicide resistance in plant pathogens. Tokyo: Springer. DOI: https://doi.org/10.1007/978-4-431-55642-8
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism, and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60. DOI: https://doi.org/10.2478/intox-2014-0009
Kim, Y. S., Lee, Y., Cheon, W., Park, J., Kwon, H.-T., Balaraju, K., Kim, J., Yoon, Y. J., & Jeon, Y. (2021). Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Scientific Reports, 11(1), 626. DOI: https://doi.org/10.1038/s41598-020-80231-2
Kumar, S., Sharma, A. K., Rawat, S. S., Jain, D. K., & Ghosh, S. (2013). Use of pesticides in agriculture and livestock animals and its impact on environment of India. Asian Journal of Environmental Science, 8(1), 51- 57.
Liu, N., Wang, Q., He, C., & An, B. (2021). CgMFS1, a major facilitator superfamily transporter, is required for sugar transport, oxidative stress resistance, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Current Issues in Molecular Biology, 43(3), 1548-1557. DOI: https://doi.org/10.3390/cimb43030109
Mukherjee, G., & Sen, S. K. (2006). Purification, characterization, and antifungal activity of chitinase from Streptomyces venezuelae P 10. Current Microbiology, 53, 265-269. DOI: https://doi.org/10.1007/s00284-005-0412-4
Nasran, H. S., Mohd Yusof, H., Halim, M., & Abdul Rahman, N. A. (2020). Optimization of protective agents for the freeze-drying of Paenibacillus polymyxa Kp10 as a potential biofungicide. Molecules, 25(11), 2618. DOI: https://doi.org/10.3390/molecules25112618
Ntow, W. J., Gijzen, H. J., Kelderman, P., & Drechsel, P. (2006). Farmer perceptions and pesticide use practices in vegetable production in Ghana. Pest Management Science: formerly Pesticide Science, 62(4), 356-365. DOI: https://doi.org/10.1002/ps.1178
Oo, M. M., Lim, G., Jang, H. A., & Oh, S. K. (2017). Characterization and pathogenicity of new record of anthracnose on various chili varieties caused by Colletotrichum scovillei in Korea. Mycobiology, 45(3), 184- 191. DOI: https://doi.org/10.5941/MYCO.2017.45.3.184
Peeran, M. F., Kuppusami, P., & Thiruvengadam, R. (2014). Pathogenesis of Colletotrichum lindemuthianum the incitant of anthracnose disease in beans mediated by macerating enzymes. The Bioscan, 9(1), 295-300.
Petit, A. N., Fontaine, F., Vatsa, P., Clément, C., & Vaillant-Gaveau, N. (2012). Fungicide impacts on photosynthesis in crop plants. Photosynthesis Research, 111(3), 315-326. DOI: https://doi.org/10.1007/s11120-012-9719-8
Poonpolgul, S., & Kumphai, S. (2007). Chili pepper anthracnose in Thailand. First International Symposium on Chili Anthracnose, 23, 17-19.
Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008). Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences, 4(5), 330. DOI: https://doi.org/10.7150/ijbs.4.330
Reyes-Estebanez, M., Sanmartin, P., Camacho- Chab, J. C., Susana, C., Chan-Bacab, M. J., Águila-Ramírez, R. N., ... & Ortega- Morales, B. O. (2020). Characterization of a native Bacillus velezensis-like strain for the potential biocontrol of tropical fruit pathogens. Biological Control, 141, 104127. https://doi.org/10.1016/j. biocontrol.2019.104127 DOI: https://doi.org/10.1016/j.biocontrol.2019.104127
Reyes-Perez, J. J., Hernandez-Montiel, L. G., Vero, S., Noa-Carrazana, J. C., QuinonesAguilar, E. E., Rincon-Enriquez, G., (2019). Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action. Journal of Food Science Technology, 56, 4992-4999. DOI: https://doi.org/10.1007/s13197-019-03971-8
Saina, C. K., Murgor, D. K., & Murgor, F. A. (2013). Climate change and food security. Environmental Change and Sustainability, 10, 55206.
Sandani, H. B. P., Ranathunge, N. P., Lakshman, P. L. N., & Weerakoon, W. M. W., (2019). Biocontrol potential of five Burkholderia and Pseudomonas strains against Colletotrichum truncatum infecting chilli pepper. Biocontrol Science Technology, 29, 727-745. DOI: https://doi.org/10.1080/09583157.2019.1597331
Savary, S., Ficke, A., Aubertot, J. N., & Hollier, C. (2012). Crop losses due to diseases and their implications for global food production losses and food security. Food Security, 4(4), 519-537. DOI: https://doi.org/10.1007/s12571-012-0200-5
Siddiqui, Y., & Ali, A. (2014). Colletotrichum gloeosporioides (Anthracnose). In Postharvest decay (pp. 337-371). Academic Press. https://doi.org/10.1016/B978-0-12- 411552-1.00011-9 DOI: https://doi.org/10.1016/B978-0-12-411552-1.00011-9
Srivastav, A. L. (2020). Chemical fertilizers and pesticides: Role in groundwater contamination. In Prasad, M. N. V. (Ed.), Agrochemicals detection, treatment and remediation (pp. 143-159). https://doi. org/10.1016/B978-0-08-103017-2.00006-4 DOI: https://doi.org/10.1016/B978-0-08-103017-2.00006-4
Ting, A. S. Y., Hoon, T. S., Kay, W. M., & Ern, C. L. (2010). Characterization of Actinobacteria with Antifungal Potential against Fusarium Crown-rot Pathogen. Pest Technology, 4(1), 65-69.
Toan, L. T., Duong, V. T. H., Linh, N. T. M., Ky, V. T., & Linh, T. P. (2019). Effects of calcium chloride treatment on suppression of fruit anthracnose disease caused by Colletotrichum gloeosporioides. Biological Control, 150, 104372.
Wang, Q.-H., Ji, Y.-P., Qu, Y.-Y., Qi, Y.- K., Li, D.-W., Liu, Z.-Y., & Wu, X.- Q. (2020). The response strategies of Colletotrichum gloeosporioides due to the stress caused by biological control agent Bacillus amyloliquefaciens deciphered by transcriptome analyses. Biological Control, 150, 104372. DOI: https://doi.org/10.1016/j.biocontrol.2020.104372
Zhou, H. W., Luan, T. G., Zou, F., & Tam, N. F. Y. (2008). Different bacterial groups for biodegradation of three-and four-ring PAHs isolated from a Hong Kong mangrove sediment. Journal of Hazardous Materials, 152(3), 1179-1185. DOI: https://doi.org/10.1016/j.jhazmat.2007.07.116
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Universiti Malaysia Terengganu Journal of Undergraduate Research
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.