INSECTICIDAL ACTIVITIES OF ESSENTIAL OILS FROM PANDAN AND LEMONGRASS AGAINST THE ADULT RED PALM WEEVIL
DOI:
https://doi.org/10.46754/umtjur.v5i4.396Keywords:
Essential oils, red palm weevil, contact toxicity, acetylcholinesterase, total soluble proteinsAbstract
The goal of this study is to ascertain whether the essential oils (EOs) derived from the plants Pandanus amaryllifolius (pandan) and Cymbopogon citratus (lemongrass) have any potential to be effective insecticides against the adult Rynchophorus ferrugineus (red palm weevil, RPW). The effectiveness of the EOs is evaluated based on their capacity to kill RPW instantly upon contact and also on their ability to block acetylcholinesterase (AChE) enzymes. These EOs’ impact on protein synthesis was also identified. After five days of exposure, the mortality rate of RPWs was found to be between 11% and 33%, with female RPWs being more affected than male RPWs. However, increasing the concentration of EOs from 5% to 10% (v/v) had no discernible effect on mortality. Both EOs are ineffective AChE inhibitors because they had no effect and rather increased the activity of the enzyme. The enzyme AChE in female RPWs is significantly inhibited by just 10% of the lemongrass. With the exception of 10% EOs, which markedly increased the TSP of female RPWs, the RPWs’ total soluble proteins (TSP) were much lower after treatment. In conclusion, both EOs have the potential to be applied as insecticides against adult RPW. Additionally, it may be said that both EOs function in a similar way towards RPW. These results add to the body of knowledge regarding the search for new insecticides that may be helpful in controlling the RPW because this study has yet to be conducted before.
References
Barbehenn, R. V. (2002). Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. Journal of Chemical Ecology, 28(7), 1329-47. DOI: https://doi.org/10.1023/A:1016288201110
Boyer, S., Zhang, H., & Lempérière, G. (2012). A review of control methods and resistance mechanisms in stored - product insects. Bulletin of Entomological Research, 102(2), 213-29. DOI: https://doi.org/10.1017/S0007485311000654
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. DOI: https://doi.org/10.1006/abio.1976.9999
Buszewski, B., Bukowska, M., & Ligor, M. (2019). A holistic study of neonicotinoids neuroactive insecticides - Properties, applications, occurrence, and analysis. Environmental Science and Pollution Research, 26, 34723-34740. DOI: https://doi.org/10.1007/s11356-019-06114-w
Campolo, O., Giunti, G., Russo, A., Palmeri, V., & Zappalà, L. (2018). Essential oils in stored product insect pest control. Journal of Food Quality, 2018, 6906105. DOI: https://doi.org/10.1155/2018/6906105
Cens, T., Chavanieu, A., Bertaud, A., Mokrane, N., Estaran, S., Roussel, J., Ménard, C., De Jesus Ferreira, M.-C., Guiramand, J., Thibaud, J.-B., Cohen-Solal, C., Rousset, M., Rolland, V., Vignes, M., & Charnet, P. (2022). Molecular targets of neurotoxic insecticides in Apis mellifera. European Journal of Organic Chemistry, 2022, e202101531. DOI: https://doi.org/10.1002/ejoc.202101531
Changbunjong, T., Boonmasawai, S., Sungpradit, S., Weluwanarak, T., & Leesombun, A. (2022). Contact and fumigant activities of Citrus aurantium essential oil against the stable fly Stomoxys calcitrans (Diptera: Muscidae). Plants, 11(9), 1122. DOI: https://doi.org/10.3390/plants11091122
Chowański, S., Kudlewska, M., Marciniak, P., & Rosiński, G. (2014). Synthetic insecticides – Is there an alternative? Polish Journal of Environmental Studies, 23(2), 291-302.
Chunzhe, J., Hui, H., Yongjian, X., Baoling, L., Zhilin, Z., & Dayu, Z. (2022). Toxicity, behavioural effects, and chitin structural chemistry of Reticulitermes flaviceps exposed to Cymbopogon citratus EO and its major constituents citral. Insects, 13(9), 812. DOI: https://doi.org/10.3390/insects13090812
Clark, A. G. (1990). The glutathione S-transferases and resistance to insecticides. In Hayes, J. D., Pickett, C. B., & Mantle, T. J. (Eds.), Glutathione S-transferases and drug resistance (pp 369-378). London: Taylor and Francis.
Duque, J. E., Urbina, D. L., Vesga, L. C., Ortiz Rodríguez, L. A., Vanegas, T. S., Stashenko, E. E., & Mendez Sanchez, S. C. (2023). Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera: Culicidae): An introduction to their possible mechanism of action. Scientific Reports, 13, 2989. DOI: https://doi.org/10.1038/s41598-023-30046-8
Eden, W. T., Alighiri, D., Supardi, K. I., & Cahyono, E. (2020). The mosquito repellent activity of the active component of air freshener gel from Java citronella oil (Cymbopogon winterianus). Journal of Parasitology Research, 2020, 1-5. DOI: https://doi.org/10.1155/2020/9053741
Feroz, A., Shakoori, A. R., & Shakoori, F. R. (2020). Effect of sublethal doses of bifenthrin and chlorpyrifos administered alone and in combinations on esterases of stored grain pest, Trogoderma granarium. Pakistan Journal of Zoology, 52(6), 2161- 2171. DOI: https://doi.org/10.17582/journal.pjz/20200501083425
Hoddle, M. S., Al-Abbad, A. H., El-Shafie, H. A. F., Faleiro, J. R., Sallam, A. A., & Hoddle, C. D. (2013). Assessing the impact of area wide pheromone trapping, pesticide applications, and eradication of infested date palms for Rhynchophorus ferrugineus (Coleoptera: Curculionidae) management in Al Ghowaybah, Saudi Arabia. Crop Protection, 53, 152-160. DOI: https://doi.org/10.1016/j.cropro.2013.07.010
Imtithal, I. J., Mustapha, W. A. W., & Idris, A. B. (2018). Toxicity of Pandanus amaryllifolius L. choloroform extract against diamond back moth, Plutella xylostera (Lepidoptera: Plutellidae). AIP Conference Proceedings, 1940, 020034.
Kim, S., Yoon, J., & Tak, J. H. (2021). Synergistic mechanism of insecticidal activity in basil and mandarin essential oils against the tobacco cutworm. Journal of Pest Science, 94, 1119-1131. DOI: https://doi.org/10.1007/s10340-021-01345-8
Li, F., & Han, Z. (2004). Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochemistry and Molecular Biology, 34(4), 397-405. DOI: https://doi.org/10.1016/j.ibmb.2004.02.001
Liu, Z., & Ho, S. (1999). Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum (Herbst). Journal of Stored Products Research, 35(4), 317-328. DOI: https://doi.org/10.1016/S0022-474X(99)00015-6
Malaysian Department of Agriculture (DOA). (2017). Prosedur Operasi Standard (SOP) kawalan perosak kumbang palma (RPW). Kuala Lumpur, Malaysia: Plant Biosecurity Division.
Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240-16265. DOI: https://doi.org/10.3390/molecules191016240
Milosavljević, I., El-Shafie, H. A., Faleiro, J. R., Hoddle, C. D., Lewis, M., & Hoddle, M. S. (2019). Palmageddon: The wasting of ornamental palms by invasive palmweevils, Rhynchophorus spp. Journal of Pest Science, 92(1), 143-156. DOI: https://doi.org/10.1007/s10340-018-1044-3
Mohamed, M. A., Shaalan, S., Ghazy, A.-E. M., Ali, A. A., Abd-Elaziz, A. M., Ghanem, M. M. E., & Abd-Elghany, S. A. (2020). Purification and characterization of acetylcholinesterase in Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). International Journal of Biological Macromolecules, 147, 1029- 1040. DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.071
Moustafa, M. A., Awad, M., Amer, A., Hassan, N. N., Ibrahim, E. D. S., Ali, H. M., Akrami, M., & Salem, M. Z. (2021). Insecticidal activity of lemongrass essential oil as an eco-friendly agent against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects, 12(08), 737. DOI: https://doi.org/10.3390/insects12080737
Nasir, M. H., Md Nor, N., Yaakop, S., & Othman, N. (2016). Distribution of serotonin (5- HT) and dopamine (DA) on digestive tract of red palm weevil larva, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae). Serangga, 21, 39-50.
Ozoe, Y. (2021). Ion channels and G protein-coupled receptors as targets for invertebrate pest control: From past challenges to practical insecticides. Bioscience, Biotechnology, and Biochemistry, 85(7), 1563-1571. DOI: https://doi.org/10.1093/bbb/zbab089
Pang, X., Feng, Y. X., Qi, X. J., et al. (2020). Toxicity and repellent activity of essential oil from Mentha piperita Linn. leaves and its major monoterpenoids against three stored product insects. Environmental Science and Pollution Research, 27, 7618- 7627. DOI: https://doi.org/10.1007/s11356-019-07081-y
Pavela, R. (2015). Essential oils for the development of eco-friendly mosquito larvicides: A review. Industrial Crops and Products, 76, 174-187. DOI: https://doi.org/10.1016/j.indcrop.2015.06.050
Pavela, R., & Benelli, G. (2016). Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in Plant Science, 21(12), 1000-1007. DOI: https://doi.org/10.1016/j.tplants.2016.10.005
Rahayu, R., Mairawita & Jannatan, R. (2018). Efficacy and residual activity of lemongrass essential oil (Cymbopogon flexuosus) against german cockroaches (Blattella germanica). Journal of Entomology, 15(3), 149-154. DOI: https://doi.org/10.3923/je.2018.149.154
Sami, A. J., & Shakoori, A. R. (2007). Extracts of plant leaves have inhibitory effect on the cellulase activity of whole-body extracts of insects – A possible recipe for bioinsecticides. Pakistan Journal of Zoology, 27, 105-118.
Shar, M. U., Rustamani, M. A., Nizamani, S. M., & Bhutto, L. A. (2012). Red palm weevil (Rhynchophorus ferrugineus Olivier) infestation and its chemical control in Sindh province of Pakistan. African Journal of Agricultural Research, 7(11), 1666-1673. DOI: https://doi.org/10.5897/AJAR11.896
Shi, W., Yan, R., & Huang, L. (2022). Preparation and insecticidal performance of sustained-release cinnamon essential oil microemulsion. Journal of the Science of Food and Agriculture, 102(4), 1397-1404. DOI: https://doi.org/10.1002/jsfa.11472
Siddiqui, J. A., Fan, R., Naz, H., Bamisile, B. S., Hafeez, M., Ghani, M. I., Wei, Y., Xu, Y., & Chen, X. (2023). Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Frontiers in Physiology, 13, 1112278. DOI: https://doi.org/10.3389/fphys.2022.1112278
Simmonds, M. S. (2003). Flavonoid–insect interactions: Recent advances in our knowledge. Phytochemistry, 64(1), 21-30. DOI: https://doi.org/10.1016/S0031-9422(03)00293-0
Solomon, B., Gebre-Mariam, T., & Asres, K. (2012). Mosquito repellent actions of the essential oils of Cymbopogon citratus,
Cymbopogon nardus and Eucalyptus citriodora: Evaluation and formulation studies. Journal of Essential Oil Bearing Plants, 15(5), 766-773.
Soreq, H., & Seidman, S. (2001). Acetylcholinesterase - New roles for an old actor. Nature Reviews Neuroscience, 2, 294-302. DOI: https://doi.org/10.1038/35067589
Tak, J., & Isman, M. B. (2015). Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Scientific Reports, 5(1), 1-10. DOI: https://doi.org/10.1038/srep12690
Teke, M. A., & Mutlu, Ç. (2021). Insecticidal and behavioral effects of some plant essential oils against Sitophilus granarius L. and Tribolium castaneum (Herbst). Journal of Plant Disease and Protection, 128, 109-119. DOI: https://doi.org/10.1007/s41348-020-00377-z
Thapa, S., Lv, M., & Xu, H. (2017). Acetylcholinesterase: A primary target for drugs and insecticides. Mini Reviews in Medicinal Chemistry, 17(17), 1665-1676. DOI: https://doi.org/10.2174/1389557517666170120153930
Vacas, S., Primo, J., & Navarro-Llopis, V. (2013). Advances in the use of trapping systems for Rhynchophorus ferrugineus (Coleoptera: Curculionidae): Traps and attractants. Journal of Economic Entomology, 106(4), 1739-1746. DOI: https://doi.org/10.1603/EC13105
Vijverberg, H. P. M., & Bercken, J. V. (1990). Neurotoxicological effects and the mode of action of pyrethroid insecticides. Critical Reviews in Toxicology, 21(2), 105-126. DOI: https://doi.org/10.3109/10408449009089875
Wahizatul, A. A., Chong, J. L., Hazlina, A. Z., & Yusuf, N. (2017). The red palm weevil, Rhynchophorus ferrugineus: Current issues and challenges in Malaysia. Oil Palm Bulletin, 74, 17-24.
Wang, Z., Zhao, Z., Cheng, X., Liu, S., Wei, Q., & Scott, I. M. (2016). Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pesticide Biochemistry and Physiology, 127, 1-7. DOI: https://doi.org/10.1016/j.pestbp.2015.09.003
Wu, H., Liu, Q., Li, X.,Wang, Y., & Zhang, H. (2013). Activities of four enzymes in Galleria mellonella larvae infected with entomopathogenic nematode Heterorhabditis beicherriana n. sp. African Journal of Agricultural Research, 8, 3245-3250.
Yunus, M. (2019). Efficacy of biological insecticides against Helicoverpa armigera in sweet corn crop (Zea mays saccharata). Australian Journal of Crop Science, 13(2), 321-327. DOI: https://doi.org/10.21475/ajcs.19.13.02.p1733
Zakaria, M. M., Zaidan, U. H., Shamsi, S., & Abd Gani, S. S. (2020). Chemical composition of essential oils from leaf extract of pandan, Pandanus amaryllifolius ROXB. Malaysian Journal of Analytical Sciences, 24(1), 87-96.
Zhang, B., Helen, H. S., Wang, J., & Liu, H. (2011). Performance and enzyme activity of beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) under various nutritional conditions. Agricultural Science of China, 10, 737- 746. DOI: https://doi.org/10.1016/S1671-2927(11)60057-6
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Universiti Malaysia Terengganu Journal of Undergraduate Research
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.