PHARMACEUTICALLY ACTIVE COMPOUNDS (PhACs) IN WATER OF ASIAN COUNTRIES: A META ANALYSIS REVIEW ON THE OCCURRENCE, DISTRIBUTION AND ENVIRONMENTAL RISK
DOI:
https://doi.org/10.46754/umtjur.v5i4.365Keywords:
Asian countries, distribution, occurrence, risk assessment, water, Pharmaceutically active compounds (PhACs)Abstract
Pharmaceutically active compounds (PhACs) have received a lot of attention due to their enormous consumption proportions, significant bioactivity, and prospective ecotoxicity that tend to impact the health of marine ecosystems and humans. In this study, five commonly used pharmaceuticals were studied in water bodies of Asian countries. The main objective of this study was to review the occurrence and distribution of selected PhACs such as diclofenac, fluoxetine, caffeine, propranolol, and triclosan in the water bodies of Asian countries. This review was found that the range of concentration of pharmaceuticals was 0.055 to 11.4 x103 ng/L. Five distribution maps were plotted using the Geographical Information System (GIS) software. China has been identified as the country that discovered most of the selected PhACs occurrence and distribution compared to other nations. Data obtained from the present review was analyzed for risk assessment analysis using the Risk Quotient (RQ) technique, which is typically applied to assess PhACs with potential ecological concerns in water ecosystems. The findings of the study showed that 31 RQ was found to be non-significant. Fluoxetine compound was classified as having the highest RQ value calculated for phytoplankton, with an RQ value of 136.08. Hence, PhACs surveillance in the water ecosystems must be strengthened, and research on PhACs occurrence and potential risks should be highlighted in global environmental research.
References
Ali, A. M., Rønning, H. T., Alarif, W., Kallenborn, R., & Al-Lihaibi, S. S. (2017). Occurrence of pharmaceuticals and personal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea. Chemosphere, 175, 505-513. https://doi.org/10.1016/j.chemosphere.2017.02.095 DOI: https://doi.org/10.1016/j.chemosphere.2017.02.095
Ashfaq, M., Li, Y., Rehman, M. S. U., Zubair, M., Mustafa, G., Nazar, M. F., Yu, C. P., & Sun, Q. (2019). Occurrence, spatial variation and risk assessment of pharmaceuticals and personal care products in urban wastewater, canal surface water, and their sediments: A case study of Lahore, Pakistan. Science of the Total Environment, 688, 653-663. https://doi.org/10.1016/j. scitotenv.2019.06.285 DOI: https://doi.org/10.1016/j.scitotenv.2019.06.285
Ashfaq, M., Li, Y., Wang, Y., Chen, W., Wang, H., Chen, X., Wu, W., Huang, Z., Yu, C. P., & Sun, Q. (2017). Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China. Water Research, 123, 655-667. https://doi. org/10.1016/j.watres.2017.07.014 DOI: https://doi.org/10.1016/j.watres.2017.07.014
Ashkezari, A. D., Hosseinzadeh, N., Chebli, A., & Albadi, M. (2018). Development of an enterprise Geographic Information System (GIS) integrated with smart grid. Sustainable Energy, Grids and Networks, 14, 25-34. https://doi.org/10.1016/j. segan.2018.02.001 DOI: https://doi.org/10.1016/j.segan.2018.02.001
Ben, W., Zhu, B., Yuan, X., Zhang, Y., Yang, M., & Qiang, Z. (2018). Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes. Water Research, 130, 38-46. https://doi.org/10.1016/j. watres.2017.11.057 DOI: https://doi.org/10.1016/j.watres.2017.11.057
Burrough, P. A., McDonnell, R., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems (3rd ed., pp. 352). Oxford university press.
C. F., Lange, L. C., & Amaral, M. C. S. (2019). Occurrence, fate and removal of Pharmaceutically Active Compounds (PhACs) in water and wastewater treatment plants - A review. Journal of Water Process Engineering, 32, 100927. https://doi. org/10.1016/j.jwpe.2019.100927 DOI: https://doi.org/10.1016/j.jwpe.2019.100927
Das Sarkar, S., Nag, S. K., Kumari, K., Saha, K., Bandyopadhyay, S., Aftabuddin, M., & Das, B. K. (2020). Occurrence and safety evaluation of antimicrobial compounds Triclosan and Triclocarban in water and fishes of the multitrophic niche of River Torsa, India. Archives of Environmental Contamination and Toxicology, 79(4), 488- 499. https://doi.org/10.1007/s00244-020- 00785-0 DOI: https://doi.org/10.1007/s00244-020-00785-0
Guruge, K. S., Goswami, P., Tanoue, R., Nomiyama, K., Wijesekara, R., & Dharmaratne, T. S. (2019). First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Science of the Total Environment, 690, 683-695. https://doi. org/10.1016/j.scitotenv.2019.07.042 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.042
Heberer, T., Feldmann, D., Reddersen, K., Altmann, H. J., & Zimmermann, T. (2002). Production of drinking water from highly contaminated surface waters: Removal of organic, inorganic, and microbial contaminants applying Mobile Membrane Filtration Units. Acta Hydrochimica et Hydrobiologica, 30(1), 24-33. DOI: https://doi.org/10.1002/1521-401X(200207)30:1<24::AID-AHEH24>3.0.CO;2-O
Howard, P. N., & Muir, D. C. G. (2011). Identifying new persistent and bioaccumulative organics among chemicals in commerce II: Pharmaceuticals. Environmental Science & Technology, 45(16), 6938-6946. https://doi.org/10.1021/ es201196x DOI: https://doi.org/10.1021/es201196x
Jayasiri, H., & Purushothaman, C. (2013). Pharmaceutically Active Compounds (PhACs): A threat for aquatic environment? Journal of Marine Science: Research & Development, 4(1). https://doi. org/10.4172/2155-9910.1000e122. DOI: https://doi.org/10.4172/2155-9910.1000e122
Kondor, A. C., Molnár, É. D., Vancsik, A., Filep, T., Szeberényi, J., Szabó, L., Maász, G., Pirger, Z., Weiperth, A., Ferincz, Á., Staszny, Á., Dobosy, P., Kiss, K. É., Jakab, G., & Szalai, Z. (2021). Occurrence and health risk assessment of pharmaceutically active compounds in riverbank filtrated drinking water. Journal of Water Process Engineering, 41, 102039. https://doi. org/10.1016/j.jwpe.2021.102039 DOI: https://doi.org/10.1016/j.jwpe.2021.102039
Kumar, M., Sarma, D. K., Shubham, S., Kumawat, M., Verma, V., Prakash, A., & Tiwari, R. (2020). Environmental endocrine-disrupting chemical exposure: Role in non-communicable diseases. Frontiers in Public Health, 8. https://doi. org/10.3389/fpubh.2020.553850. DOI: https://doi.org/10.3389/fpubh.2020.553850
Lauretta, R., Sansone, A., Sansone, M., Romanelli, F., & Appetecchia, M. (2019). Endocrine disrupting chemicals: Effects on endocrine glands. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00178. DOI: https://doi.org/10.3389/fendo.2019.00178
Lee, Y. J., Lee, S. E., Lee, D. S., & Kim, Y. H. (2008). Risk assessment of human antibiotics in Korean aquatic environment. Environmental Toxicology and Pharmacology, 26(2), 2 1 6 - 2 2 1 . h t t p s : / / d o i . o rg / 1 0 . 1 0 1 6 / j . etap.2008.03.014.
Li, W. L., Zhang, Z. F., Ma, W. L., Liu, L. Y., Song, W. W., & Li, Y. F. (2018). An evaluation on the intra-day dynamics, seasonal variations and removal of selected pharmaceuticals and personal care products from urban wastewater treatment plants. Science of the Total Environment, 640- 641, 1139-1147. https://doi.org/10.1016/j. scitotenv.2018.05.362 DOI: https://doi.org/10.1016/j.scitotenv.2018.05.362
Molinari, R., Caruso, A., Argurio, P., & Poerio, T. (2006). Diclofenac transport through stagnant sandwich and supported liquid membrane systems. Industrial & Engineering Chemistry Research, 45(26), 9115-9121. https://doi.org/10.1021/ie0607088 DOI: https://doi.org/10.1021/ie0607088
National Geographic Society. (2012, October 9). Asia: Physical geography. Retrieved November 19, 2021, from https://www. nationalgeographic.org/encyclopedia/asia/
Omar, T. F. T., Aris, A. Z., Yusoff, F. M., & Mustafa, S. (2018a). Occurrence, distribution, and sources of emerging organic contaminants in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Marine Pollution Bulletin, 131, 284-293. https:// doi.org/10.1016/j.marpolbul.2018.04.019 DOI: https://doi.org/10.1016/j.marpolbul.2018.04.019
Omar, T. F. T., Aris, A. Z., Yusoff, F. M., & Mustafa, S. (2018b). Risk assessment of Pharmaceutically Active Compounds (PhACs) in the Klang River estuary, Malaysia. Environmental Geochemistry and Health, 41(1), 211-223. https://doi. org/10.1007/s10653-018-0157-1 DOI: https://doi.org/10.1007/s10653-018-0157-1
Omar, T. F. T., Aris, A. Z., & Yusoff, F. M. (2021). Multiclass analysis of emerging organic contaminants in tropical marine biota using improved QuEChERS extraction followed by LC MS/MS. Microchemical Journal, 164, 106063. https://doi.org/10.1016/j. microc.2021.106063 DOI: https://doi.org/10.1016/j.microc.2021.106063
Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C. U., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: Chemistry, Occurrence, effects, and removal methods. Chemical Reviews, 119(6), 3510-3673. https://doi.org/10.1021/acs.chemrev.8b00299 DOI: https://doi.org/10.1021/acs.chemrev.8b00299
Peng, Q., Song, J., Li, X., Yuan, H., Liu, M., Duan, L., & Zuo, J. (2020). Pharmaceutically Active Compounds (PhACs) in surface sediments of the Jiaozhou Bay, North China. Environmental Pollution, 266, 115245. https://doi.org/10.1016/j. envpol.2020.115245 DOI: https://doi.org/10.1016/j.envpol.2020.115245
Pereira, A. M., Silva, L. J., Meisel, L. M., Lino, C. M., & Pena, A. (2015). Environmental impact of pharmaceuticals from Portuguese wastewaters: Geographical and seasonal occurrence, removal and risk assessment. Environmental Research, 136, 108-119. https://doi.org/10.1016/j. envres.2014.09.041 DOI: https://doi.org/10.1016/j.envres.2014.09.041
Praveena, S. M., Shaifuddin, S. N. M., Sukiman, S., Nasir, F. A. M., Hanafi, Z., Kamarudin, N., Ismail, T. H. T., & Aris, A. Z. (2018). Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): Occurrence and potential risk assessments. Science of the Total Environment, 642, 230-240. https://doi. org/10.1016/j.scitotenv.2018.06.058 DOI: https://doi.org/10.1016/j.scitotenv.2018.06.058
Simazaki, D., Kubota, R., Suzuki, T., Akiba, M., Nishimura, T., & Kunikane, S. (2015). Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Research, 76, 187-200. https://doi.org/10.1016/j.watres.2015.02.059 DOI: https://doi.org/10.1016/j.watres.2015.02.059
Stasinakis, A. S., Mermigka, S., Samaras, V. G., Farmaki, E., & Thomaidis, N. S. (2011). Occurrence of endocrine disrupters and selected pharmaceuticals in Aisonas River (Greece) and environmental risk assessment using hazard indexes. Environmental Science and Pollution Research, 19(5), 1574-1583. https://doi.org/10.1007/s11356- 011-0661-7 DOI: https://doi.org/10.1007/s11356-011-0661-7
Sui, Q., Huang, J., Deng, S., Chen, W., & Yu, G. (2011). Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes. Environmental Science & Technology, 45(8), 3341-3348. https://doi.org/10.1021/ es200248d DOI: https://doi.org/10.1021/es200248d
Sun, Q., Li, M., Ma, C., Chen, X., Xie, X., & Yu, C. P. (2016a). Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environmental Pollution, 208, 371-381. https://doi.org/10.1016/j. envpol.2015.10.003 DOI: https://doi.org/10.1016/j.envpol.2015.10.003
Sun, Q., Li, Y., Li, M., Ashfaq, M., Lv, M., Wang, H., Hu, A., & Yu, C. P. (2016b). PPCPs in Jiulong River estuary (China): Spatiotemporal distributions, fate, and their use as chemical markers of wastewater. Chemosphere, 150, 596-604. https://doi.org/10.1016/j.chemosphere.2016.02.036 DOI: https://doi.org/10.1016/j.chemosphere.2016.02.036
The World Bank. (2020). World bank open data. World Bank Web site.
Thomaidi, V. S., Stasinakis, A. S., Borova, V. L., & Thomaidis, N. S. (2016). Assessing the risk associated with the presence of emerging organic contaminants in sludge-amended soil: A country-level analysis. Science of the Total Environment, 548- 549, 280-288. https://doi.org/10.1016/j. scitotenv.2016.01.043 DOI: https://doi.org/10.1016/j.scitotenv.2016.01.043
Tran, N. H., Urase, T., & Kusakabe, O. (2010). Biodegradation characteristics of pharmaceutical substances by whole fungal culture Trametes versicolor and its Laccase. Journal of Water and Environment Technology, 8(2), 125-140. https://doi. org/10.2965/jwet.2010.125 DOI: https://doi.org/10.2965/jwet.2010.125
United Nations. (2014). World Urbanization Prospects: The 2014 Revision, Highlights. ST/ ESA/SER.A/352, New York, United. https://doi.org/10.4054/DemRes.2005.12.9 DOI: https://doi.org/10.4054/DemRes.2005.12.9
Zhang, H., Zhang, M., Zhang, C., & Hou, L. (2021). Formulating a GIS-based geometric design quality assessment model for Mountain highways. Accident Analysis & Prevention, 157, 106172. https://doi. org/10.1016/j.aap.2021.106172 DOI: https://doi.org/10.1016/j.aap.2021.106172
Zhang, Y., Geißen, S. U., & Gal, C. (2008). Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151-1161. https://doi.org/10.1016/j. chemosphere.2008.07.086 DOI: https://doi.org/10.1016/j.chemosphere.2008.07.086
Zhou, S., di Paolo, C., Wu, X., Shao, Y., Seiler, T. B., & Hollert, H. (2019). Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environment International, 128, 1-10. https://doi.org/10.1016/j. envint.2019.04.034 DOI: https://doi.org/10.1016/j.envint.2019.04.034
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Universiti Malaysia Terengganu Journal of Undergraduate Research
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.