SCREENING OF THIRD FILIAL (F3) SEGREGATING POPULATION FOR SALT TOLERANCE IN CEREAL: A REVIEW
DOI:
https://doi.org/10.46754/umtjur.v4i3.341Keywords:
Screening, doubled haploid, cereals, F3 population, salt toleranceAbstract
Cereal crops such as maize, wheat, rice, and others are cultivated in every part of the world. However, cereals crop cultivation globally has been affected by salinity stress. Salinity stress causes a reduction in the growth, yield and productivity of cereal crops. Hence, to overcome the problem related to salinity stress, several plans are made to develop a salinity tolerance cereal variety. Therefore, various strategies, from phenotypic and molecular screening, have been introduced to develop salinity tolerance cereal varieties. Salinity tolerance is a crucial trait that must be inserted into cereal crops to maximize the yield productivity of cereals crops. The objective of this review is to undergo screening for salinity tolerance in the third filial (F3) segregating population of cereals to identify the large amounts of lines correlated with salt tolerance which were further used in the breeding process. Besides, the selection process of F3 and other populations of the cereals is conducted on yield and yield components and the correlation between traits linked with salt tolerance. Thus, this review study will focus on the screening and selection process of the F3 and other generations on salinity-tolerant and high-yielding cereals developments.
References
Al-Ashkar, I., Ibrahim, A., Ghazy, A., Attia, K., Al-Ghamdi, A. A., & Al-Dosary, M. A. (2021). Assessing the correlations and selection criteria between different traits in wheat salt-tolerant genotypes. Saudi Journal of Biological Sciences, 28(9), 5414–5427. doi:10.1016/j.sjbs.2021.05.076 DOI: https://doi.org/10.1016/j.sjbs.2021.05.076
Amoah, N. K. A., Akromah, R., Kena, A. W., Manneh, B., Dieng, I., & Bimpong, I. K. (2020). Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo.’ Euphytica, 216(10). https://doi.org/10.1007/s10681-020-02689-5 DOI: https://doi.org/10.1007/s10681-020-02689-5
Augustina, U. A., Iwunor, O. P. & Ijeoma, O. R. (2013). Heritability and character correlation among some rice genotypes for yield and yield components. Journal of Plant Breeding and Genetics, 1, 73–84.
Ali, M. A. (2012). Single trait selection in two segregating populations of spring wheat (Triticum aestivum L.). Asian Journal of Crop Science, 4, 41-49. DOI: https://doi.org/10.3923/ajcs.2012.41.49
Akram, M., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Iqbal, J. & Mohsan, M. (2010). Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pakistan Journal of Botany, 42(1), 141–154. https://doi.org/10.5897/ajar11.1475 DOI: https://doi.org/10.5897/AJAR11.1475
Aziz, T., Khalil, I. H., Hussain, Q., Shah, T., Ahmad, N. & Sohail, A. (2018). Heritability and selection response for grain yield and associated traits in f3 wheat populations. Sarhad Journal of Agriculture, 34(4), 767-774. DOI: https://doi.org/10.17582/journal.sja/2018/34.4.767.774
Ahmad, M., Khan, B. H., Iqbal, M., Saleem, M., Ahmad, F., Shahid, M., Rehman, A., Ullah, I. & Nawaz, A. (2018). Comparison of response of F4 and F3 generations of tomato from year to year selection. Asian Journal Agriculture & Biology, 6(2), 245- 250.
Bonilla, P., Dvorak, J., Mackill, D., Deal, K. & Gregorio, G. (2002). RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philippine Agricultural Scientist, 85(1), 68-76.
Benin, G., de Carvalho, F. I. F., de Oliveira, A. C., Lorencetti, C., Valério, I. P., Schmidt, D. A. M., Hartwig, I., Ribeiro, G., Vieira, E. A. & da Silva, J. A. G. (2005). Early generation selection strategy for yield and yield components in white oat. Scientia Agricola, 62(4). https://doi.org/10.1590/s0103-90162005000400009 DOI: https://doi.org/10.1590/S0103-90162005000400009
Burghardt, L. T., Young, N. D., & Tiffin, P. (2017). A Guide to Genome-Wide Association Mapping in Plants. Current Protocols in Plant Biology, 2(1), 22–38. https://doi.org/10.1002/cppb.20041 DOI: https://doi.org/10.1002/cppb.20041
Brown, J. & Caligari, P. (2008). An introduction to plant breeding. Blackwell publishing. DOI: https://doi.org/10.1002/9781118685228
Chunthaburee, S., Dongsansuk, A., Sanitchon, J., Pattanagul, W. and Theerakulpisut, P. (2015). Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi Journal of Biological Sciences, 23(4), 467-477. http://dx.doi.org/10.1016/j.sjbs.2015.05.013 DOI: https://doi.org/10.1016/j.sjbs.2015.05.013
Collard, B. C. Y., Beredo, J. C., Lenaerts, B., Mendoza, R., Santelices, R., Lopena, V., Verdeprado, H., Raghavan, C., Gregorio, G. B., Vial, L., Demont, M., Biswas, P. S., Iftekharuddaula, K. M., Rahman, M. A., Cobb, J. N., & Islam, M. R. (2017). Revisiting rice breeding methods–evaluating the use of Rapid Generation Advance (RGA) for routine rice breeding. In Plant Production Science, 20(4), 337-352. https://doi.org/10.1080/1343943X.2017.1391705 DOI: https://doi.org/10.1080/1343943X.2017.1391705
Darwish, M., Abd El-Kreem, T. & Farhat, W. (2018). Selection studies in some bread wheat F3 crosses at Sakha and Nubaria locations. Journal of Plant Production, 9(1), 81-89. https://doi.org/10.21608/jpp.2018.35259 DOI: https://doi.org/10.21608/jpp.2018.35259
Dashti, H., Naghavi, M. R., & Tajabadipour, A. (2010). Genetic analysis of salinity tolerance in a bread wheat cross. Journal of Agriculture, Science and Technology, 12, 347-356.
El-Hendawy, S. E., Hu, Y., Sakagami, J. I. & Schmidhalter, U. (2011). Screening Egyptian Wheat Genotypes for Salt Tolerance at Early Growth Stages. International Journal of Plant Production, 5, 1735-8043.
Elias, S. M., Rahman, M. S., Khan, S. F., Biswas, S., Haque, T., Razzaque, S., & Seraj, Z. I. (2020). Combination of traits at two developmental stages under salt stress as a measure of tolerance in a reciprocally crossed rice (Oryza sativa) population. Crop and Pasture Science, 71(4), 334. doi:10.1071/cp19560 DOI: https://doi.org/10.1071/CP19560
Gowayed, S. M. H. and Abd El-Moneim, D. (2021). Detection of genetic divergence among some wheat (Triticum aestivum L.) genotypes using molecular and biochemical indicators under salinity stress. PLoS ONE, 16(3), e0248890. https://doi.org/10.1371/journal.pone.02 DOI: https://doi.org/10.1371/journal.pone.0248890
Gregorio, G.B., Senadhira, D. & Mendoza, R.D. (1997). Screening rice for salinity tolerance. IRRI Discussion Paper Series no. 22. Manila (Philippines), International Rice Research Institute: P, 1-30.
Genc, Y., Oldach, K., Verbyla, A. P., Lott, G., Hassan, M., Tester, M., Wallwork, H., & McDonald, G. K. (2010). Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theoretical and Applied Genetics, 121(5). https://doi.org/10.1007/s00122-010-1357-y DOI: https://doi.org/10.1007/s00122-010-1357-y
Huang, X., & Han, B. (2014). Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 65, 531–551. https://doi.org/10.1146/annurev-arplant-050213-035715 DOI: https://doi.org/10.1146/annurev-arplant-050213-035715
Hazzouri, K.M., Khraiwesh, B., Amiri, K.M., Pauli, D., Blake, T.K., Shahid, M., Mullath, S.K., Nelson, D., Mansour, A.L., Salehi-Ashtiani, K., Purugganan, M.D., & Masmoudi, K. (2018). Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism. Frontiers in Plant Science, 9. DOI: https://doi.org/10.3389/fpls.2018.00156
Islam, M. T., Sharma, P. C., Gautam, R. K., Singh, D., Singh, S., Panesar, B. and Ali, S. (2010). Salt tolerance in parental lines of rice hybrids through physiological attributes and molecular markers. International Journal of Experimental Agriculture. 2(1): 1-7
Islam, M. R., Gregorio, G. B., Salam, M. A., Collard, B. C. Y., Tumimbang- Raiz, E., Adorada, D. L., Mendoza, R. D., Singh, R. K. and Hassan, L. (2011). Validation of a major QTL for salinity tolerance on chromosome 1 of rice in three different breeding populations. Agrochimica, 55(6), 355-366.
Jayaprakash, T., Reddy, T. D., Babu, V. R., & Bhave, M. H. V. (2017). Estimation of selection gain in early segregating generations (F2 and F3) of rice (Oryza sativa L.) for protein and yield content. International Journal of Current Microbiology and Applied Sciences, 6(8). https://doi.org/10.20546/ijcmas.2017.608.184 DOI: https://doi.org/10.20546/ijcmas.2017.608.184
Kanbar, A., Kondo, K., & Shashidhar, H. E. (2011). Comparative efficiency of pedigree, modified bulk and single seed descent breeding methods of selection for developing high-yielding lines in rice (Oryza sativa L.) under aerobic condition. Electronic Journal of Plant Breeding, 2(2).
Kaushik, A., Saini, N., Jain, S., Rana, P., Singh, R. K., & Jain, R. K. (2003). Genetic analysis of a CSR10 (indica) x Taraori Basmati F3 population segregating for salt tolerance using ISSR markers. Euphytica, 134(2). https://doi.org/10.1023/B:EUPH.0000003986.29822.42 DOI: https://doi.org/10.1023/B:EUPH.0000003986.29822.42
Khan, S., Javed, M. A., Jahan, N., & Manan, F. A. (2016). A short review on the development of salt tolerant cultivars in rice. International Journal of Public Health Science, 5(2). https://doi.org/10.11591/ijphs.v5i2.4786 DOI: https://doi.org/10.11591/.v5i2.4786
Kakar, N., Jumaa, S. H., Redoña, E. D., Warburton, M. L., & Reddy, K. R. (2019). Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice, 12(1). https://doi.org/10.1186/s12284-019-0317-7 DOI: https://doi.org/10.1186/s12284-019-0317-7
Khalil, R.M.A. (2013). Molecular and Biochemical Markers Associated with Salt Tolerance in Some Sorghum Genotypes. World Applied Sciences Journal, 22(4), 459-469.
Kertesz, Z., Pauk, J., & Barabas, Z. (1991). Production and utilization of doubled haploid wheat mutants in hybrid and conventional breeding. Cereal Research Communications, 19(1/2), 109-117. http://www.jstor.org/stable/23783743
Koli, N.R., & Patidar, B. (2018). Effectiveness of selection response on F3 and F4 generations for grain yield and yield attributing traits in aromatic rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 9, 368. DOI: https://doi.org/10.5958/0975-928X.2018.00041.8
Konaté, A.K., Zongo, A., Kam, H., Sanni, A., & Audebert, A. (2016). Genetic variability and correlation analysis of rice (Oryza sativa L.) inbred lines based on agro-morphological traits. African Journal of Agricultural Research, 11, 3340-3346. DOI: https://doi.org/10.5897/AJAR2016.11415
Lorencetti, C., De Carvalho, F. I. F., De Oliveira, A. C., Valério, I. P., Hartwig, I., Marchioro, V. S., & Vieira, E. A. (2006). Backcross as a strategy to identify genotypes and develop promising oat segregating populations. Ciênc. Rural, 36(4). https://doi.org/10.1590/S0103-84782006000400012 DOI: https://doi.org/10.1590/S0103-84782006000400012
Lazaridou, T., Lithourgidis, A., Kotzamanidis, S., Sistanis, I., & Roupakias, D. (2013). Evaluation of DH lines produced from superior F3 plants and corresponding breeding lines in barley. Australian Journal of Crop Science, 7(10).
Liu, C., Chen, K., Zhao, X., Wang, X., Shen, C., Zhu, Y., Dai, M., Qiu, X., Yang, R., Xing, D., Pang, Y. & Xu, J. (2019). Identification of genes for salt tolerance and yield related traits in rice plants grown hydroponically and under saline field conditions by genome-wide association study. Rice, 12(88), 1-13 https://doi.org/10.1186/s12284019-0349-z DOI: https://doi.org/10.1186/s12284-019-0349-z
Ma, Y., Shabala, S., Li, C., Liu, C., Zhang, W., & Zhou, M. (2015). Quantitative trait Loci for salinity tolerance identified under drained and waterlogged conditions and their association with flowering time in barley (Hordeum vulgare. L). PLoS One, 10(8), e0134822. https://doi.org/10.1371/journal.pone.0134822 DOI: https://doi.org/10.1371/journal.pone.0134822
Mazumder, N. I., Sultana, T., Paul, P. C., Roy, D. C., Sushmoy, D. R., Haque, M. S., Razia, S., & Noor, M. M. A. (2019). Performance of salinity tolerance of F3 rice lines of BRRI dhan 29 × PBRC (STL-20) using RAPD markers. Research in Agriculture Livestock and Fisheries, 6(2), 215–225. https://doi.org/https://doi.org/10.3329/ralf.v6i2.43040 DOI: https://doi.org/10.3329/ralf.v6i2.43040
Molla, K.A., Debnath, A.B., Ganie, S.A., & Mondal, T. K. (2015). Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). BMC Plant Biology, 15(122). https://doi.org/10.1186/s12870-015-0498-1 DOI: https://doi.org/10.1186/s12870-015-0498-1
Mwando, K. E., Angessa, T.T., Han, Y., and Li, C. (2020). Salinity tolerance in barley during germination – homologs and potential genes. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology) 21, 93–121. Springer Nature. https://doi.org/https://doi.org/10.1631/jzus.B1900400 DOI: https://doi.org/10.1631/jzus.B1900400
Mwando, E. K. (2021). The genetics of barley (Hordeum vulgare) salinity tolerance during germination and the instantaneous seedling endurance. [Doctoral Dissertation, Murdoch University]. College of Science, Health, Engineering and Education, School of Veterinary and Life Sciences, Murdoch University, Australia. https://researchrepository.murdoch.edu.au/id/eprint/60357/1/Mwando2021.pdf
Mwando, E., Angessa, T. T., Han, Y., Zhou, G. & Li, C. (2021). Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress. Agronomy, 11(103), 1-19. https://doi.org/10.3390/agronomy11010103 DOI: https://doi.org/10.3390/agronomy11010103
Nessa Shompa, B., Fatima, K., Jony, M., Sarker, S., Jafar Ullah, M., Chowdhury, A. & Rahman, J. (2020). Selection of Dwarf Stature Yield Potential Lines from F3 Populations of White Maize (Zea mays L.). Journal of Genetic Resources, 6(2), 95-105. https://doi.org/ 10.22080/jgr.2020.18610.1181
Oyiga, B. C., Sharma, R. C., Shen, J., Baum, M., Ogbonnaya, F. C., Léon, J. & Ballvora, A. (2016). Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. Journal of Agronomy and Crop Science, 202, 472-485. https://doi.org/10.1111/jac.12178 DOI: https://doi.org/10.1111/jac.12178
Oyiga, B.C., Sharma, R.C., Baum, M., Ogbonnaya, F.C., Leon, J. & Ballvora, A. (2018). Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat plant. Plant, Cell & Environment, 41, 919–935 DOI: https://doi.org/10.1111/pce.12898
Prasad, I., Rao, G. G., Chinchmalatpure, A. R., Kumar, S., Ramesh, N. V., Singh, C., & Sharma, D. K. (2016). Morpho-Physiological Traits Imparting Salinity Tolerance in Maize (Zea mays L.) Hybrids under Saline Water Irrigation in Vertisols. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103624.2016.1208758 DOI: https://doi.org/10.1080/00103624.2016.1208758
Prasad. B. H. V. & Biradar. B. D. (2019). Simultaneous selection for grain yield in F3 population progenies of cross M31-2A × IS 26025 in rabi sorghum. Trends in Biosciences, 10(19). https://www.cabdirect.org/cabdirect/abstract/20193315109
Rajani, R. & Elanchezian, R. (2012). SSR Marker analysis of f3 mapping population involving pokkali and ir28 for salt tolerance. International Journal of Bio-Technology and Research, 2(3), 21-28 © TJPRC Pvt. Ltd.
Rahman, M. A., Bimpong, I. K., Bizimana, J. B., Pascual, E. D., Arceta, M., Swamy, B. P. M., Diaw, F., Rahman, M. S., & Singh, R. K. (2017). Mapping QTLs using a novel source of salinity tolerance from Hasawi and their interaction with environments in rice. Rice, 10(1). https://doi.org/10.1186/s12284-017-0186-x. DOI: https://doi.org/10.1186/s12284-017-0186-x
Rahman, Mehboob-ur., Malik, TA., Chowdhary, MA & Iqbal, MJ & Zafar, Y. (2004). Application of random amplified polymorphic DNA (RAPD) technique for the identification of markers linked to salinity tolerance in wheat (Triticum aestivum L.). Pakistan Journal of Botany. 36(3), 595-602.
Rao, K., Khan, R., Awan, F., Akrem, A., Iftikhar, A., Anwar, F., Alzahrani, H., Alsamadany, H. & Iqbal, R. (2022). Genome-wide association studies of seedling quantitative trait loci against salt tolerance in wheat. Frontiers in Genetics, 13, https://doi.org/10.3389/fgene.2022.946869. DOI: https://doi.org/10.3389/fgene.2022.946869
Surek, H., & Beser, N. (2003). Selection for grain yield & yield components in early generations for temperate rice. Philippine Journal of Crop Science, 28(3).
Surek, H., & Beser, N. (2005). Selection for Grain Yield and Its Components in Early Generations in Rice (Oryza sativa L.). Trakya University Journal of Natural Sciences, 6(1), 51-58. https://dergipark.org.tr/tr/download/article-file/213713
Silva, F. M. da, Pereira, E. D. M., Val, B. H. P., Perecin, D., Mauro, A. O. Di, & Unêda-Trevisoli, S. H. (2018). Strategies to select sorghum segregating populations with the goal of improving agronomic traits. Acta Scientiarum. Agronomy, 40(1). https://doi.org/10.4025/actasciagron.v40i1.39324 DOI: https://doi.org/10.4025/actasciagron.v40i1.39324
Souleymane, O., Manneh, B., Nartey, E., Ofori, K. & Danquah, E. (2015). Genetic Mechanisms Controlling Salt Tolerance in F3 Populations of Rice. International Journal of Plant Breeding and Genetics, 9, 262-268. DOI: https://doi.org/10.3923/ijpbg.2015.262.268
Suwarto, S. & Susanto, & U. N. S. (2015). Performance of selected plants in F2 and F3 generation for yield and yield component characters of new plant type rice genotypes at aerobic rice. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6, 1165-1170.
Singh, M., Nara, U., Kumar, A., Choudhary, A., Singh, H., & Thapa, S. (2021). Salinity tolerance mechanisms and their breeding implications. Journal of Genetic Engineering and Biotechnology, 19, 173. https://doi.org/10.1186/s43141-021-00274-4 DOI: https://doi.org/10.1186/s43141-021-00274-4
Vogel, K. E. (2009). Backcross breeding. In: Scott M.P. (Eds.), Transgenic maize: Methods in molecular biology™ (pp. 161-169). Humana Press. https://doi.org/10.1007/978-1-59745-494-0_14. DOI: https://doi.org/10.1007/978-1-59745-494-0_14
Wild, A. (2003). Soils, land and food: managing the land during the twenty-first century. Cambridge, UK: Cambridge University Press DOI: https://doi.org/10.1017/CBO9780511815577