UV PHOTOCATALYSIS AND METAL DOPED TITANIUM DIOXIDE: ELIMINATION OF E. COLI AND S. AUREUS IN WATER

Authors

  • NUR AQILAH NABILAH MOHAMED Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu
  • WAN SALIDA WAN MANSOR Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu

DOI:

https://doi.org/10.46754/umtjur.v4i1.259

Keywords:

Metal-doped, titanium dioxide, UV photocatalysis, Escherichia coli, Staphylococcus aureus, disinfection

Abstract

Photocatalysis has been widely used for water disinfection and wastewater treatment. UV photocatalysis induced bacteria photocatalytic disinfection, focusing on mechanisms in bacteria inactivation. The problem with industrial wastewater is that it generally contains a high concentration of toxic or non-biodegradable pollutants. The application of photocatalysis is mainly focused on the removal of microorganisms. Metal-doped TiO2-based photocatalyst has a significant potential for the inactivation of harmful pathogens. In this research, the effect of different metal-doped on photocatalytic disinfection against Escherichia coli (E. coli) (gram-negative) and Staphylococcus aureus (S. aureus) (gram-positive) under UV light was investigated. TiO2 was used and doped with various types of metal such as copper (Cu), cobalt (Co), and iron (Fe). The experiments were run under UV light with 1 g/L of selected metal-doped for up to 3 hours. A series of photocatalytic disinfection on E. coli and S. aureus were conducted on water contamination with 500 mL of trypticase soy broth (TSB) and 5 ml of bacteria. These results show that the UV photocatalyst with Cu doped-TiO2 gives 99% of E. coli disinfection. While for S. aureus disinfection Co-doped-TiO2 gives 96% of removal bacteria after 3 hours of treatment. In conclusion, a metal-doped TiO2–based UV photocatalytic system is highly recommended for improving the water decontamination process.

References

Ameta, Rakshit, Meenakshi S. Solanki, Surbhi Benjamin, and Suresh C. Ameta. (2018). Photocatalysis. In Advanced oxidation processes for wastewater treatment: Emerging green chemical technology. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00006-1

Avilés-García, O., Espino-Valencia, J., Romero- Romero, R., Rico-Cerda, J. L., Arroyo- Albiter, M., Solís-Casados, D. A., & Natividad-Rangel, R. (2018). Enhanced photocatalytic activity of titania by co-doping with Mo and W. Catalysts, 8(12). DOI: https://doi.org/10.3390/catal8120631

Backhaus, K., Marugán, J., Van Grieken, R., & Sordo, C. (2010). Photocatalytic inactivation of E. faecalis in secondary wastewater plant effluents. Water Science and Technology, 61(9), 2355–2361. DOI: https://doi.org/10.2166/wst.2010.056

Byrne, C., Subramanian, G., & Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 3531–3555. DOI: https://doi.org/10.1016/j.jece.2017.07.080

Collivignarelli, M. C., Abbà, A., Benigna, I., Sorlini, S., & Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability (Switzerland), 1–21. https://doi.org/10.3390/su10010086 DOI: https://doi.org/10.3390/su10010086

Crişan, M., Mardare, D., Ianculescu, A., Drăgan, N., Niţoi, I., Crişan, D., … Vasile, B. (2018). Iron doped TiO 2 films and their photoactivity in nitrobenzene removal from water. Applied Surface Science, 455(February), 201–215. DOI: https://doi.org/10.1016/j.apsusc.2018.05.124

Fiorenza, R., Bellardita, M., Scirè, S., & Palmisano, L. (2018). Effect of the addition of different doping agents on visible light activity of porous TiO2 photocatalysts. Molecular Catalysis, 455(May), 108–120. DOI: https://doi.org/10.1016/j.mcat.2018.06.002

Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology, 32(1), 147–156. https://doi. org/10.1016/j.nbt.2014.01.001 DOI: https://doi.org/10.1016/j.nbt.2014.01.001

Haider, A. J., Al-Anbari, R. H., Kadhim, G. R., & Salame, C. T. (2017). Exploring potential environmental applications of TiO2 Nanoparticles. Energy Procedia, 119, 332–345. DOI: https://doi.org/10.1016/j.egypro.2017.07.117

Ibhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous photocatalysis: Recent advances and applications. Catalysts, 3(1), 189–218. DOI: https://doi.org/10.3390/catal3010189

Laxma Reddy, P. V., Kavitha, B., Kumar Reddy, P. A., & Kim, K. H. (2017). TiO2-based photocatalytic disinfection of microbes in aqueous media: A review. Environmental Research, 154(December 2016), 296–303. https://doi.org/10.1016/j. envres.2017.01.018 DOI: https://doi.org/10.1016/j.envres.2017.01.018

Mathew, S., Ganguly, P., Rhatigan, S., Kumaravel, V., Byrne, C., Hinder, S. J., … Pillai, S. C. (2018). Cu-Doped TiO2: Visible light assisted photocatalytic antimicrobial activity. Applied Sciences (Switzerland). https://doi.org/10.3390/app8112067 DOI: https://doi.org/10.26434/chemrxiv.7159733

Rincón, A., & Pulgarin, C. (2004). Bactericidal action of illuminated TiO 2 on pure Escherichia coli and natural bacterial consortia : Post-irradiation events in the dark and assessment of the effective disinfection time. Applied Catalysis B: Environment, 49, 99–112. DOI: https://doi.org/10.1016/j.apcatb.2003.11.013

Sadanandam, G., Lalitha, K., Kumari, V. D., Shankar, M. V., & Subrahmanyam, M. (2013). Cobalt doped TiO2: A stable and efficient photocatalyst for continuous hydrogen production from glycerol: Water mixtures under solar light irradiation. International Journal of Hydrogen Energy, 38, 9655–9664. https://doi.org/10.1016/j. ijhydene.2013.05.116 DOI: https://doi.org/10.1016/j.ijhydene.2013.05.116

Shang, K., Ai, S., Ma, Q., Tang, T., Yin, H., & Han, H. (2011). Effective photocatalytic disinfection of E. coli and S. aureus using polythiophene/MnO2 nanocomposite photocatalyst under solar light irradiation. Desalination, 278, 173–178. DOI: https://doi.org/10.1016/j.desal.2011.05.017

Tsang, C. H. A., Li, K., Zeng, Y., Zhao, W., Zhang, T., Zhan, Y., … Huang, H. (2019). Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environment International, 125(December 2018), 200–228. https://doi. org/10.1016/j.envint.2019.01.015 DOI: https://doi.org/10.1016/j.envint.2019.01.015

Wang, J. L., & Xu, L. J. (2012). Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 251–325. DOI: https://doi.org/10.1080/10643389.2010.507698

Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., & Cai, Z. (2019). Recent advances and applications of semiconductor photocatalytic technology. Applied Sciences (Switzerland), 9(12). DOI: https://doi.org/10.3390/app9122489

Additional Files

Published

2022-04-25

How to Cite

MOHAMED, N. A. N. ., & WAN MANSOR, W. S. . (2022). UV PHOTOCATALYSIS AND METAL DOPED TITANIUM DIOXIDE: ELIMINATION OF E. COLI AND S. AUREUS IN WATER. Universiti Malaysia Terengganu Journal of Undergraduate Research, 4(1), 39–52. https://doi.org/10.46754/umtjur.v4i1.259