ANTIOXIDANT ACTIVITIES OF DIFFERENT VARIETIES OF SPENT COFFEE GROUND (SCG) EXTRACTED USING ULTRASONIC-ETHANOL ASSISTED EXTRACTION METHOD
DOI:
https://doi.org/10.46754/umtjur.v3i3.215Keywords:
Spent coffee, antioxidant, ultrasonic-ethanol assisted techniqueAbstract
Spent coffee grounds (SCG) a by-product from coffee industries, coffee shops and domestic users contain large amounts of organic compounds which could be re-used as source antioxidants for foods or cosmetics. This project aims to study the antioxidant activity of three different spent ground coffee varieties (Robusta, Liberica and Arabica) extracted using ultrasonic-ethanol assisted extraction method utilizing 60% ethanol. The extracted samples were analysed using DPPH, FRAP, FTC and TBA, total phenolic content, total flavonoid content and also individual flavonoids to measure the quality and quantity of antioxidative activity in spent coffee. Robusta and Liberica SCGs exhibited similar activity (p>0.05) towards DPPH scavenging and ferric reducing reaction. Both showed 77.99±0.92 and 77.75±0.04%, respectively for DPPH, and 26.82±2.92 and 24.41±0.49 mg TE/g dry sample, respectively for FRAP. In FTC and TBA analyses, Robusta SCG was found to have the least activity with 61.07±2.43% and 2.9±0.14% respectively. Spent Arabica has similar inhibition percentage (p>0.05) as Liberica SCG in FTC (57.08±0.9 and 50.54±4.23% respectively), yet has different inhibition activity (p<0.05) in TBA (4.3±0.14 and 7.4±1.41% respectively). Total phenolic and flavonoid contents were found to be the highest in Arabica SCG with 941.04±37.25 mg GAE and 78.21 mg QE/g dry sample, respectively. Liberica and Robusta SCGs contain a total of phenolic content of 661.14±2.86 and 547.51±59.5 mg GAE/g dry sample, respectively and a total of flavonoid content of 71.64±1.85 and 20.66±7.82 mg QE/g dry sample. Individual flavonoids of luteolin and quercetin were present in all the three spent ground coffee varieties. Results from the study illustrated that the three different varieties of SCGs showed different extract yields as well as diverse traits of antioxidant activity that could serve as a good antioxidant.
References
Al-Dhabi, N. A., Ponmurugan, K., & Maran, P. (2016). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics - Sonochemistry, 34, 206 – 213. https://doi. org/10.1016/j.ultsonch.2016.05.005. DOI: https://doi.org/10.1016/j.ultsonch.2016.05.005
Andrade, K. S., Goncalvez, R. T., Maraschin, M., Ribeiro-do-Valle, R. M., Martinez, J., & Ferreira, S. R. S. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks : Antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544–552. https:// doi.org/10.1016/j.talanta.2011.11.031. DOI: https://doi.org/10.1016/j.talanta.2011.11.031
Bermejo, D. V., Luna, P., Manic, M. S., Najdanovic-Visak, V., Reglero, G., & Fornari, T. (2013). Extraction of caffeine from natural matter using a bio-renewable agrochemical ethanol. Food and Bioproducts Processing, 9, 303–309. http:// dx.doi.org/10.1016/j.fbp.2012.11.007 DOI: https://doi.org/10.1016/j.fbp.2012.11.007
Bravo, J., Juaniz, I., Monente, C., Caemmerer, B., Kroh, L. W., De Pena, M. P., & Cid, C. (2012). Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds. Journal of Agricultural and Food Chemistry, 60, 12565–12573. https:// doi.org/10.1021/jf3040594. DOI: https://doi.org/10.1021/jf3040594
Chanakya, H. N., & De Alwis, A. A. P. (2004). Environmental Issues and Management in Primary Coffee Processing. Process Safety and Environmental Protection, 82(4), 291–300. https://doi. org/10.1205/095758204323162319 DOI: https://doi.org/10.1205/095758204323162319
Do, Q. D., Elisa Angkawijaya, A., Lan Tran- Nguyen, P., Huong Huynh, L., Edi Soetaredjo, F., Ismadji, S., & Ju, Y.-H. (2014). Effect of extraction ethanol on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi. org/10.1016/j.jfda.2013.11.001 DOI: https://doi.org/10.1016/j.jfda.2013.11.001
Ebrahimzadeh, M. A., Pourmorad, F., & Hafezi, S. (2008). Antioxidant activities of Iranian corn silk. Turkish Journal of Biology, 32(1), 43–49. https://doi.org/10.3989/gya.010109 DOI: https://doi.org/10.3989/gya.010109
Emami, S. A., Shahani, A., & Khayyat, M. H. (2013). Antioxidant activity of leaves and fruits of cultivated conifers in Iran. Jundishapur Journal of Natural Pharmaceutical Products, 8(3), 113–117. https://doi.org/10.17795/jjnpp-9670 DOI: https://doi.org/10.17795/jjnpp-9670
Heemann, A. C. W., Heemann, R., Kalegari, P., Spier, M. R., & Santin, E. (2019). Enzyme-assisted extraction of polyphenols from green yerba mate. Brazilian Journal of Food Technology, 22, e2017222. https:// doi.org/10.1590/1981-6723.22217 DOI: https://doi.org/10.1590/1981-6723.22217
Kiattisin, K., Nantarat, T., & Leelapornpisid, P. (2016). Evaluation of antioxidant and anti-tyrosinase activities as well as stability of green and roasted coffee bean extracts from Coffea arabica and Coffea canephora grown in Thailand. Journal of Pharmacognosy and Phytotherapy, 8(10), 182–192. https:// doi.org/10.5897/JPP2016.0413 DOI: https://doi.org/10.5897/JPP2016.0413
Kikuzaki, H., & Nakatani, N. (1993). Antioxidant effects of some ginger constituents. Journal of Food Science, 58(6), 1407–1410. https://doi.org/10.1111/j.1365-2621.1993. tb06194.x DOI: https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
Lee, L. S., Lee, N., Kim, Y. H., Lee, C. H., Hong, S. P., Jeon, Y. W., & Kim, Y. E. (2013). Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. Molecules, 18(11), 13530–13545. https:// doi.org/10.3390/molecules181113530 DOI: https://doi.org/10.3390/molecules181113530
López-Barrera, D. M., Vázquez-Sánchez, K., LoarcaPiña, M. G. F., & Campos-Vega, R. (2016). Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chemistry, 212, 282-290. https://doi. org/10.1016/j.foodchem.2016.05.175 DOI: https://doi.org/10.1016/j.foodchem.2016.05.175
Looi, S. K., Zainol, M. K., Mohd Zin, Z., Hamzah, Y., & MohdMaidin, N. (2020). Antioxidant and antibacterial activities in the fruit peel, flesh and seed of Ceri Terengganu (Lepisanthes alata Leenh.) Food Research, 4 (5), 1600 –1610. https:// doi.org/10.26656/fr.2017.4(5).172 DOI: https://doi.org/10.26656/fr.2017.4(5).172
Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: from sources to food industry applications. Molecules, 24(22), 4132. https://doi.org/10.3390/ molecules24224132 DOI: https://doi.org/10.3390/molecules24224132
Malik, N. H., Zin, Z. M., Razak, S. B. A., Ibrahim, K., & Zainol, M. K. (2017). Antioxidative activities and flavonoids contents in leaves of selected mangrove species in Setiu wetlands extracted using different solvents. Journal of Sustainability Science and Management. 3, 14-22
Moon, J. K., & Shibamoto, T. (2009). Antioxidant assays for plant and food components. Journal of Agricultural and Food Chemistry, 57(5), 1655–1666. https:// doi.org/10.1021/jf803537k DOI: https://doi.org/10.1021/jf803537k
Moreira, D. P., Monteiro, M. C., Ribeiro-Alves, M., Donangelo, C. M., & Trugo, L. C. (2005). Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages. Journal of Agricultural and Food Chemistry, 53(5), 1399–1402. https:// doi.org/10.1021/jf0485436 DOI: https://doi.org/10.1021/jf0485436
Moure, A. S., Cruz, J. M., Franco, D., Domõ Â Nguez, J. M., Sineiro, J., Domõ Â Nguez, H., & Parajoâ, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145–171. https://doi. org/10.1016/s0308-8146(00)00223-5 DOI: https://doi.org/10.1016/S0308-8146(00)00223-5
Murthy, P. S., Manjunatha, M. R., Sulochannama, G., & Naidu, M. M. (2012). Extraction, characterization and bioactivity of coffee anthocyanins. European Journal of Biological Science, 4(1), 13–19. https://doi. org/10.5829/idosi.ejbs.2012.4.1.6149
Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173–179. https://doi. org/10.1016/j.seppur.2011.09.036 DOI: https://doi.org/10.1016/j.seppur.2011.09.036
Nadar, S.S., Rao, P., & Rathod, V.K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 108, 309-330. https:// doi. org/10.1016/j.foodres.2018.03.006. DOI: https://doi.org/10.1016/j.foodres.2018.03.006
Ng, K. S., Mohd Zin, Z., MohdMaidin, N., Abdullah, M.A.A., & Zainol, M. K. (2019). Effect of drying temperatures on antioxidant properties of Napier grass (Pennisetum purpureum). Asian Journal Agriculture and Biology, 7(1), 39-48.
Oliveira, R. T. De, Junior, J. M., Vinicius, D., & Stefani, R. (2014). Phytochemical Screening and comparison of DPPH radical scavenging from different samples of coffee and Yerba Mate beverages, 4(5), 1–7.
Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G., & Petrucci, R. (2013). Recovery of natural antioxidants from spent coffee ground. Journal of Agricultural and Food Chemistry, 61(17), 4162–4168. https://doi. org/10.1021/jf4005719 DOI: https://doi.org/10.1021/jf4005719
Patay, É. B., Sali, N., Kőszegi, T., Csepregi, R., Balázs, V. L., Németh, T. S., & Papp, N. (2016). Antioxidant potential, tannin and polyphenol contents of seed and pericarp of three Coffea species. Asian Pacific Journal of Tropical Medicine, 9(4), 366–371. https:// doi.org/10.1016/j.apjtm.2016.03.014 DOI: https://doi.org/10.1016/j.apjtm.2016.03.014
Ranic, M., Nikolic, M., Pavlovic, M., Buntic, A., Siler-marinkovic, S., & Dimitrijevic-brankovic, S. (2014). Optimization of microwave-assisted extraction of natural antioxidants from spent espresso coffee grounds by response surface methodology. Journal of Cleaner Production, 80, 69–79. https://doi.org/10.1016/j. jclepro.2014.05.060 DOI: https://doi.org/10.1016/j.jclepro.2014.05.060
Rothwell, J. A., Perez-Jimenez, J., Neveu, V., Medina-Remon, A., M’Hiri, N., Garcia- Lobato, P., … Scalbert, A. (2013). Phenol- Explorer 3.0: a major update of the Phenol- Explorer database to incorporate data on the effects of food processing on polyphenol content. Database, 2013(0), bat070– bat070. doi:10.1093/database/bat070 DOI: https://doi.org/10.1093/database/bat070
Saw, A. K.-C., Yam, W.-S., Wong, K.-C., & Lai, C.-S. (2015). A comparative study of the volatile constituents of Southeast Asian Coffea arabica, Coffea liberica and Coffea robusta Green Beans and their antioxidant activities. Journal of Essential Oil Bearing Plants, 18(1), 64–73. https://doi.org/10.108 0/0972060X.2014.977580 DOI: https://doi.org/10.1080/0972060X.2014.977580
Schenker, S., Heinemann, C., Huber, M., Pompizzi, R., Perren, R., & Escher, R. (2002). Impact of roasting conditions on the formation of aroma compounds in Coffee beans. Journal of Food Science, 67(1), 60-66. https://doi.org/10.1111/j.1365-2621.2002. tb11359.x DOI: https://doi.org/10.1111/j.1365-2621.2002.tb11359.x
Shafekh, E., Khalili, M. A., Habibah, U., Farhanah, N., Husna, N., Nafizah, S., … Zubaidi, A. (2012). Total phenolic content and in vitro antioxidant activity of Vigna sinensis. International Food Research Journal, 19(4), 1393–1400.
Shebis, Y., Iluz, D., Kinel-Tahan, Y., Dubinsky, Z., & Yehoshua, Y. (2013). Natural antioxidants: Function and sources. Food and Nutrition Sciences, 4, 643–649. https:// doi.org/10.4236/fns.2013.46083 DOI: https://doi.org/10.4236/fns.2013.46083
Shukri, N.A., Mohd Zin, Z., MohdMaidin, N., Hasmadi, M., & Zainol, M.K. (2020). Ramification of pH in pectinase-assisted extraction on the antioxidant capacity of Arabica spent coffee ground (SCG) extract. Food Research, 4 (4), 1303–1311. https:// doi.org/10.26656/fr.2017.4(4).070 DOI: https://doi.org/10.26656/fr.2017.4(4).070
Valipour, M. (2015). Land use policy and agricultural water management of the previous half of century in Africa. Applied Water Science, 5(4), 367–395. https://doi. org/10.1007/s13201-014-0199-1 DOI: https://doi.org/10.1007/s13201-014-0199-1
Vignoli, J. A., Bassoli, D. G., & Benassi, M. T. (2011). Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chemistry, 124(3), 863–868. https://doi.org/10.1016/j. foodchem.2010.07.008 DOI: https://doi.org/10.1016/j.foodchem.2010.07.008
Yashin, A., Yashin, Y., Wang, J. Y., & Nemzer, B. (2013). Antioxidant and antiradical activity of coffee. Antioxidants, 2, 230–245. https:// doi.org/10.3390/antiox2040230 DOI: https://doi.org/10.3390/antiox2040230
Zainol, M., Abdul-Hamid, A., Abu Bakar, F., & Dek, P. (2009). Effect of different drying methods on the degradation of selected flavonoids in Centella asiatica. International Food Research Journal, 16, 531–537.
Zainol, M.K., Wong, K.Y., Mohd Zin, Z., Kamarudin, K.S., Danish-Daniel, A., Ng. K.S., & Mamat, H. (2018). Effect of ethanol in ultrasonic assisted extraction technique on antioxidative properties of passion fruit (Passiflora edulis) leaves. Malaysian Applied Biology Journal, 47(6), 19-27.
Zuki, A., Goh, Y., Noordin, M., Hamid, M., & Azmi, T. (2011). Determination of antioxidant activity in methanolic and chloroformic extracts of Momordica charantia. African Journal of Biotechnology, 10(24), 4932–4940.
Zuorro, A., & Lavecchia, R. (2012). Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. Journal of Cleaner Production, 34, 49–56. https://doi. org/10.1016/j.jclepro.2011.12.003 DOI: https://doi.org/10.1016/j.jclepro.2011.12.003