MECHANICAL AND PHYSICAL PROPERTIES OF BIO-NANOCOMPOSITE FILMS BASED ON CHICKEN SKIN GELATIN WITH DIFFERENT CONCENTRATION OF CHITOSAN NANOPARTICLES

Authors

  • GUI CHAN LEE Faculty of Fishery and Food Science, Universiti Malaysia Terengganu
  • NORIZAH MHD. SARBON Faculty of Fishery and Food Science, Universiti Malaysia Terengganu

DOI:

https://doi.org/10.46754/umtjur.v2i3.156

Keywords:

Bio-nanocomposite film, gelatine film, chicken skin gelatine, chitosan nanoparticles, film characterization

Abstract

Plastics packaging is non-biodegradable and risks to human health and environmental pollution. In contrast, gelatin-based film lack of desired mechanical, thermal and water vapour barrier properties. Thus, this study aimed to investigate the mechanical and physical properties of bio-nanocomposite films based on chicken skin gelatin with different concentration of chitosan nanoparticles (CSNPs). Gelatin/CSNPs film solutions with different CSNPs concentration (0-8%, w/w) were stirred at 45oC for 30 min and oven-dried at 45oC. Film characterization determination includes tensile strength (TS), elongation at break (EAB), Young’s modulus (YM), water solubility, water vapour permeability (WVP), film morphology and melting temperature (Tm). Results of the study indicated that incorporation of CSNPs significantly influenced film properties. The addition of CSNPs increased the TS and YM value, which lead to stronger films than the pure chicken skin gelatin films. However the addition of CSNPs decreased the EAB value. Furthermore, WVP and water solubility significantly decreased (p < 0.05) by the addition of 6% CSNPs. Morphology images showed that increased CSNPs reduced the film’s amorphous character, especially in high level, in which higher CSNPs (8%) resulted in the aggregation of particles in the composites. The nano-reinforcement films showed higher thermal stability as compared to pure chicken skin gelatin films. In conclusion, the film with 6% CSNPs showed the best formulation, as it demonstrated high in TS, YM and Tm value, while low in EAB, water solubility and WVP value compared to other films. The results presented in this study showed the feasibility of using bio-nanocomposite technology to improve the properties of biopolymer films based on chicken skin gelatin.

References

Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., & Miraki, R. (2013a). Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54, 166–173.

Abdollahi, M., Alboofetileh, M., RezaeiaR, M., & Behrooz, R. (2013b). Comparing physico mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 3(2), 416-424.

Acosta, S., Jimenez, A., Chafar, M., Gonzalez-Martinez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of ester of fatty acid. Food Hydrolloids, 49, 135-143.

Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollahi, M. (2013). Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. Journal of Food Engineering, 117(1), 26-33.

AOAC. (2006). Official methods of analysis of AOAC international (18th ed.). Virginia, USA: Association of Official and Analytical Chemists International.

Azizi, S., & Mohamad, R. (2018). Mechanical and barrier properties of kappa carrageenan/ cellulose nanocrystals bio-nanocomposite films. IOP Conference Series: Materials Science and Engineering, 368, 1-6.

Balakrishnan, P., Gopi, S., M S, S., & Thomas, S. (2017). UV resistant transparent bionanocomposite films based on potato starch/cellulose for sustainable packaging. Starch- Stärke, 70(1-2), 1-34.

Chen, G., Liu, S., Chen, S., & Qi, Z. (2001). FTIR Spectra, Thermal Properties, and Dispersibility of a Polystyrene/ Montmorillonite Nanocomposite. Macromolecular Chemistry and Physics, 202(7), 1189–1193.

Choo, K., Ching, Y., Chuah, C., Julai, S., & Liou, N. S. (2016). Preparation and Characterization of Polyvinyl Alcohol- Chitosan Composite Films Reinforced with Cellulose Nanofiber. Materials, 9(8), 644.

Chuaynukul, K., Prodpran, T., & Benjakul, S. (2015). Properties of thermo-compression moulded bovine and fish gelatin films as influenced by resin preparation condition. International Food Research Journal, 22(3), 1095-1102.

Daud, A., Gaikwad, N., Sapkal, N., & Bonde, M. (2012). To study the effect of solvent, viscosity, and temperature on the mouth-dissolving film of Withania somnifera Linn. Asian Journal of Pharmaceutics, 6(3), 212.

De Moura, M. R., Lorevice, M. V., Mattoso, L. H. C., & Zucolotto, V. (2011). Highly Stable, Edible Cellulose Films Incorporating Chitosan Nanoparticles. Journal of Food Science, 76(2), 25–29.

Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24.

El Miri, N., Abdelouahdi, K., Barakat, A., Zahouily, M., Fihri, A., Solhy, A., & El Achaby, M. (2015). Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology o f film-forming solutions, transparency, water vapour barrier and tensile properties of films. Carbohydrate Polymers, 129, 156– 167.

Frone, A. N., Berlioz, S., Chailan, J. F., & Panaitescu, D. M. (2013). Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydrate Polymers, 91(1), 377–384.

Ghuttora, N. (2016). Increase the usage of Biopolymers and Biodegradable Polymers for Sustainable Environment. https://www. theseus.fi/bitstream/handle/10024/121984/ D e g r e e % 2 0 T h e s i s % 2 r e p o r t . p f ? sequence=1, 23 December 2018.

Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2014). Fabrication of bio nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172-182.

Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2016). Preparation and Characterization of Chitosan Nanoparticles- Loaded Fish Gelatin-Based Edible Films. Journal of Food Process Engineering, 39(5), 521–530.

Jorge, M. F. C., Alexandre, E. M. C., Flaker, C. H. C., Bittante, A. M. Q. B., & Sobral, P . J. D. A. (2015). Biodegradable Films Based on Gelatin and Montmorillonite Produced by Spreading. International Journal of Polymer Science, 1-9.

Jridi, M., Hajjia, S., Ayeda, H. B., Lassoueda, I., Mbarek, A., Kammouna, M.,… Nasri, M. (2014). Physical, structural, antioxidant and antimicrobial properties of gelatin chitosan composite edible films. International Journal of Biological Macromolecules, 67, 373–379. doi.org/10.1016/j. ijbiomac.2014.03.054.

Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., … Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90(4), 1601–1608. doi.org/10.1016/j.carbpol.2012.07.037.

Kumar, P., Sandeep, K. P., Alavi, S., Truong, V. D., & Gorga, R. E. (2010). Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. Journal of Food Engineering, 100(3), 480– 489.

Langowski, H. C., & Wani, A. A. (2016). Food Packaging and Shelf Life. Science Direct, 7, 1-46.

Mohanty, S., Nayak, S. K., Kaith, B. S., & Kalia, S. (2015). Polymer Nanocomposites based on Inorganic and Organic Nanomaterials. Technology and Engineering, 278-279.

Mu, C., Guo, J., Li, X., Lin, W., & Li, D. (2012). Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 27(1), 22-29.

Müller, K., Bugnicourt, E., Latorre, M., Jorda, M., Echegoyen Sanz, Y., Lagaron, J., … Schmid, M. (2017). Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials, 7(4), 74. doi.org/10.3390/nano7040074.

Nagarajan, M., Benjakul, S., Prodpran, T., & Songtipya, P. (2015). Properties and characteristics of nanocomposite films from tilapia skin gelatin incorporated with ethanolic extract from coconut husk. Journal of Food Science and Technology, 52(12), 7669–7682.

Nazmi, N. N., Isa, M. I. N., & Sarbon, N. M. (2017). Preparation and characterization o f chicken skin gelatin/CMC composite film as compared to bovine gelatin film. Food Bioscience, 19, 149–155.

Nor, M. H. M., Nazmi, N. N. M., & Sarbon, N. M. (2017). Effects of plasticizer concentrationson functional properties of chicken skin gelatin films. International food research journal, 24(5), 1910-1918.

North, E. J., & Halden, R. U. (2014). Plastics and Environmental Health: The Road Ahead. Review on Environmental Health, 28(1), 1-8.

Nur Hanani, Z. A., Beatty, E., Roos, Y. H., Morris, M., A. & Kerry, J. P. (2013). Development and Characterization of Biodegradable Composite Films Based on Gelatin Derived from Beef, Pork and Fish Sources. Foods, 2, 1-17.

Nur Hazirah, M., Isa, M., & Sarbon, N. (2016). Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life, 9, 55-63.

Othman, S. (2014). Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural S c i e n c e Procedia, 2, 296-303.

Oun, A. A., & Rhim, J. (2017). Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocolloids, 67, 45-53.

Ramos, M., Valdés, A., Beltrán, A., & Garrigós, M. (2016). Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings, 6(4), 41.

Romainor, A. N. B., Chin, S. F., Pang, S. C., & Bilung, L. M. (2014). Preparation and characterization of chitosan nanoparticles-doped cellulose films with antimicrobial property. Journal of Nanomaterials, 2014, 1-10.

Rasid, N.A.M., Nazmi, N.N.M. Isa, M.I.N., & Sarbon, N.M. (2018). Rheological, functional and antioxidant properties of films forming solution and active gelatin films incorporated with Centella asiatica (L.) urban extract. Food Packaging and Shelf life 18, 115-124.

Rouhi, J., Mahmud, S., Naderi, N., Ooi, C., & Mahmood, M. (2013). Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Research Letters, 8(1), 364.

Sadegh-Hassani, F., & Mohammadi Nafchi, A. (2014). Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. International Journal of Biological Macromolecules, 67, 458–462.

Sahraee, S., Ghanbarzadeh, B., Milani, J., & Hamishehkar, H. (2017). Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles. Food and Bioprocess Technology, 10(8), 1441-1453.

Sarbon, N. M., Badii, F., & Howell, N. K. (2013). Preparation and characterisation of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocolloids, 30(1), 143-151.

Sarbon, N. M., Badii, F., & Howell, N. K. (2015). The effect of chicken skin gelatin and whey protein interactions on rheological and thermal properties. Food Hydrocolloids, 45, 83-92.

Shin, J., & Selke, S. E. M. (2014). Food Packaging. Food Processing: Principles and Applications, 249-273.

Soo, P. Y., & Sarbon, N. M. (2018). Preparation and characterization of edible chicken skin gelatin film incorporated with rice flour. Food Packaging and Shelf Life, 15, 1-8.

Wittaya, T. (2012). Protein-Based Edible Films: Characteristics and Improvement of Properties. Structure and Function of Food Engineering, 43-70.

Additional Files

Published

2020-07-31

How to Cite

LEE, G. C. ., & MHD. SARBON, N. . (2020). MECHANICAL AND PHYSICAL PROPERTIES OF BIO-NANOCOMPOSITE FILMS BASED ON CHICKEN SKIN GELATIN WITH DIFFERENT CONCENTRATION OF CHITOSAN NANOPARTICLES. Universiti Malaysia Terengganu Journal of Undergraduate Research, 2(3), 1–14. https://doi.org/10.46754/umtjur.v2i3.156