PLANT CONSERVATION STATUS AND SPECIES DIVERSITY OF HUTAN LIPUR JERAM LINANG, KELANTAN

SITI MARIAM, M.N^A* AND JIVITRA, B.^B

^{ab}Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

*Corresponding author: sitimariam@umt.edu.my

Abstract: A study to determine plant species diversity and the conservation status of a hilly lowland forest of Hutan Lipur Jeram Linang in Kelantan was carried out within 0.1 ha plot. All vascular plants (except lianas and epiphytes) were enumerated and identified. A total of 255 taxa representing 121 species belonging to 87 genera in 47 families were identified. Among these were 24 species endemic to Peninsular Malaysia and 47 species with medicinal values. Plants were categorized according to growth forms as follows: 67% trees, 17% shrubs, 7% palms, 6% herbs, and 3% ferns. Based on Important value index (IVI), *Elateriospermum tapos*, *Goniothalamus umbrosus*, and *Monocarpia marginalis* were the most dominant species whilst Rubiaceae, Arecaceae and Fabaceae were the three most diverse families. Species diversity was high based on the Shannon-Weiner index with the value of 4.38. In this study, two species from Dipterocarpaceae, which were *Dipterocarpus grandiflorus* and *Shorea collina*, were listed as Endangered (E) and Critically Endangered (CE) species respectively according to IUCN Red List. Information gained from this study showed that the forest harbored high plant diversity and endemism, so proper management is needed to protect and conserve this forest for sustainability and development.

Keywords: Plant diversity, hilly lowland forest, medicinal plant, endemism, conservation status.

Introduction

Malaysia is rich in plant biodiversity with over 2,800 species of trees documented in The Tree Flora of Malaya (Whitmore, 1972; 1973 & Ng, 1978; 1989). However, it is estimated that there are about 15,000 species of flowering plants (Bidin & Latiff, 1995) and more than 1,170 species of ferns (Parris & Latiff, 1997) in Malaysia. For Peninsular Malaysia alone, more than 8,500 species of seed plants have been catalogued (Turner, 1995) so far. However, the documentation of floral diversity in Malaysia is far from complete as the areas in Sabah and Sarawak have not been actively surveyed botanically yet.

As a global hotspot, plant biodiversity and conservation of these unique life forms in Malaysia merit special attentions to avoid becoming endangered plants. But nowadays, Malaysian tropical rainforests are highly exposed to the globalization development for human purposes. Consequently, Malaysia has been losing much of its natural resources including plants and animal species through habitat degradation, forest fragmentation,

commercial logging, introduction of exotic species and local climate change. IUCN-World Conservation Union Biodiversity Report indicates that Malaysia has more endangered plant species than any other countries in the world (IUCN 2010). The report suggests that, in the last 50 years, about two per cent or about 170 of the estimated 12,500 species of flowering plants in Peninsular Malaysia have become extinct. For Peninsular Malaysia, there are more than 2830 tree species, but 400 tree species have been exploited for timber and other forest products (Latiff, 2011).

In Peninsular Malaysia, forest inventories at the macro-level were conducted to collect and generate some information on the forest resources (Masran & Samsudin, 1996). In view of Malaysia's vast biological diversity, it is a heavy task to document and conserve all plant species present. However, investigations into plant diversity and conservation value of forests play vital roles in providing information on species richness of the plants and the changes that they undergo that can potentially be useful for management purposes and assist

Universiti Malaysia Terengganu Journal of Undergraduate Research Volume 1 Number 4, October 2019: 37-50

in understanding forest ecology and ecosystem functions. With urban development putting pressures on tropical forests, there is urgency to document the plant diversity of Malaysian forest.

Hutan Lipur Jeram Linang is one of the most well-known recreational forests located in Ulu Sat Forest Reserved, Machang Kelantan. This virgin forest comprising 1, 026 ha has been developed since 1983 with 10 ha development equipped with infrastructure to attract visitors. To date, no plant diversity and conservation studies have been conducted at this area. Therefore, this study was carried out to document the plant diversity and serve as a stepping stone towards conservation and sustainable development of the forest.

Materials and Methods

Study Site

Hutan Lipur Jeram Linang (Figure 1) is located in Machang district, in the state of Kelantan (N 05° 44.52' E 102° 22.54'). The forest protects a watershed area supported by huge numbers of flora and fauna, with an average elevation of 153 meters above sea level. The climate is classified as a tropical wet, with a tropical moist forest biozone. The minimum and maximum temperature throughout Hutan Lipur Jeram Linang are 24 °C and 32 °C respectively, while the daily average temperature is 27 °C. The minimum and maximum relative humidity are 52% and 92% respectively, while the average relative humidity is recorded at 78% (JPSM, 2010). This forest falls under the jurisdiction of State Forest Department of Kelantan for its restoration and maintenance activities.

Figure 1: Sampling area at Hutan Lipur Jeram Linang, Kelantan (Source: Google Maps)

Data collection

A 0.1 hectare (50 m x 20 m) of belt transect plot was established systematically at the study site. The plot was then divided into ten subplots. The plant sampling focused only on certain life form of plants, which were trees, shrubs, ferns and herbaceous plants. Climbers and epiphytes were excluded in this study. The sampled species were divided into four main categories:

- i. All tree species with Diameter Breast Height (DBH) above 5 cm
- ii. Saplings and small shrubs with DBH below5 cm
- iii. Seedlings below 1.3 m in height
- iv. Herbaceous plants and ferns

In each plot, the plants were counted for their number of individuals. For each plant species, the tree diameter and height were measured and the number of individuals of each species was recorded in all plots, except for seedlings, ferns and herbs, where only the number of individuals per species and basal diameter were calculated and recorded. Two samples of each species were collected for species identification, and voucher specimens were kept in the laboratory for future references.

Plant Identification

All the collected plant species were preserved and dried before the identification process started. The books "Tree Flora of Malaya" (Whitmore, 1972; 1973 & Ng, 1978; 1989) and "Flora of Peninsula" (Ridley, 1922; 1923; 1924; 1925) were used as references for the plant identification. All plants were identified to the lowest taxonomic level according to their morphological characteristics.

Data Analysis

For species diversity, Shannon-Weiner index (H'), (as in Magurran, 1988), was calculated. Relative density, relative frequency, relative dominance and importance value index (IVI) were calculated according to Cottam and Curtis (1956). For this study, the conservation value of the sampled plants only included two main portions, which were their conservation status and endemism. The conservation status for each species was identified using IUCN Red List whilst endemic species was referred to Ng et al. (1990). Plants species with potential medicinal values were identified using the "Economic Products of Malay Peninsula" (Burkill, 1935) and Compendium of Medicinal and Aromatic Plants Asia (Volume 2) (Handa et al. 2006).

The Importance Value index (IVI) is calculated as shown below:

- 1) Importance Value = Relative Density + Relative Dominance + Relative Frequency
- 2) Diversity index is used to determine species abundance in one particular area. This index is calculated as shown below:

$$H' = -\sum pi \log_{2} pi$$

Results and Discussion

Floristic Composition

A total of 349 vascular plants representing 121 species belonging to 87 genera in 47 families were identified within 0.1 ha of Hutan Lipur Jeram Linang (Table 1). These plants comprised 4.2% species, 16% genera and 44% families of the total taxa found in Peninsular Malaysia. Plants were categorized according to growth forms as follows: 67% of all species were trees (232 individuals), 17% shrubs (59 individuals), 7% palms (25 individuals), 6% herbs (21 individuals), and 3% ferns (12 individuals) (Figure 2). The three highest families collected across all categories were Rubiaceae with 11 species, followed by Arecaceae (9 species), Fabaceae (7 species) and Euphorbiaceae (6 species) (Fig 2). Euphorbiaceae was the most abundant family with the largest number of individuals per hectare (11.7% of plants), followed by Annonaceae (8.3%), and Arecaceae (6.9%) (Figure 3). In terms of individual's composition, the study area was dominated by three most abundant tree species, namely Elateriospermum tapos (Euphorbiaceae), Goniothalamus umbrosus (Annonaceae) and Monocarpia marginalis (Annonaceae). For herbaceous, the three most abundant species were Ardisia foliosa (Myrsinaceae), Iguanura wallichiana (Arecaceae) and Homalomena sagittifolia (Araceae) (Fig 4).

This study showed that the study area had a high plant species diversity despite the smaller size of plot (0.1 ha) compared to other previous studies at Bukit Belata Forest Reserve, Selangor (0.2 ha) that recorded 127 species belonging to 82 genera and 37 families (Nizam et al. 2008) and 173 species belonging to 100 genera and 44 families of 0.24 ha at Panti Forest Reserve, Johor (Nizam et al. 2009). Meanwhile, Juliana et al. (2005) recorded 45 and 65 species in two study plots of 0.2 ha at Ulu Muda Forest Reserve, Kedah. Euphorbiaceae was the dominant family based on the number of individuals in this study which was consistent with studies of lowland forest at Pasoh Forest Reserve (Kochumen et al. 1990), Gunung Stong Forest Reserve (Nizam et al. 2008) and Panti Forest Reserve (Nizam et al. 2009).

Table 1: Total list of species found within 0.1 ha at Hutan Lipur Jeram Linang.

No	Family	Species	Local Name	Life form
	ANGIOSPERMS			
	Monocotyledonous			
1	Araceae	Homalomena sagittifolia	Keladi Kemoyang	Herb
2	Arecaceae	Arenga hookeriana	Sugar Palm	Palm
3	Arecaceae	Arenga pinnata	Kabong	Palm
4	Arecaceae	Calamus sp. 1	Rotan	Palm
5	Arecaceae	Calamus sp. 2	Rotan	Palm
6	Arecaceae	Iguanura sp. 1	Mapau Kalui	Palm
7	Arecaceae	Iguanura sp. 2	Tronok	Palm
8	Arecaceae	Iguanura wallichiana	Tronok	Palm
9	Arecaceae	Licuala sallehana	-	Palm
10	Arecaceae	Pinanga scortechinii	Pinang	Palm
11	Aristolochiaceae	Thottea dependens	Telinga Kelawar	Herb
12	Cyperaceae	Mapania cuspidata	Serapat	Herb
13	Hypoxidaceae	Molineria capitulata	Lemba	Palm
14	Maranthaceae	Stachyphrynium cylindricum	Tong Sat	Herb
15	Musaceae	Musa gracilis	Pisang Hutan	Herb
16	Taccaceae	Tacca integrifolia	Janggut Adam	Herb
17	Taccaceae	Tacca palmata	Keladi Murai	Herb
	Dicotyledonous			
18	Anacardiaceae	Mangifera gracilipes	Medang	Tree
19	Anacardiaceae	Melanochyla caesia	Rengas Hitam	Tree
20	Anacardiaceae	Swintonia robinsonii	Merpauh	Tree
21	Anisophylleaceae	Anisophyllea disticha	Kayu Pacat	Tree
22	Annonaceae	Cyathocalyx pruniferus	-	Tree
23	Annonaceae	Goniothalamus macrophyllus	Selayak Hitam	Tree
24	Annonaceae	Goniothalamus sp.	Kenerak	Tree
25	Annonaceae	Goniothalamus sumbrosus	Kenerak	Tree
26	Annonaceae	Monocarpia marginalis	Mempisang	Tree
27	Aralidiaceae	Aralidium pinnatifidium	Hempedu Buaya	Shrul
28	Burseraceae	Canarium littorale	Asam	Tree
29	Burseraceae	Dacryodes longifolia	-	Tree
30	Burseraceae	Triomma malaccensis	-	Tree
31	Cannabaceae	Gironniera hirta	Hampas Tebu	Tree
32	Cannabaceae	Gironniera nervosa	Medang Kasap	Tree
33	Cannabaceae	Gironniera parvifolia		Tree

34	Clusiaceae	Calophyllum macrocarpum	Bintangor Bunut	Tree
35	Clusiaceae	Garcina eugeniifolia	Manggis Hutan	Tree
36	Clusiaceae	Mesua ferrea	Penaga Lilin	Tree
37	Clusiaceae	Mesua grandis	Penaga Bayan	Tree
38	Clusiaceae	Mesua lepidota	Penaga Tikus	Tree
39	Combretaceae	Terminalia phellocarpa	-	Tree
40	Dilleniaceae	Dillenia reticulata	Simpoh	Tree
41	Dipterocarpaceae	Dipterocarpus cornutus	Keruing Gombang	Tree
42	Dipterocarpaceae	Dipterocarpus grandiflorus	Keruing Belimbing	Tree
43	Dipterocarpaceae	Shorea collina	Red Balau	Tree
44	Ebenaceae	Diospyros lanceifolia	Kayu Arang	Tree
45	Ebenaceae	Diospyros sumatrana	Kayu Malam	Tree
46	Ebenaceae	Diospyros trengganuensis	Kayu Arang	Tree
47	Euphorbiaceae	Aporosa arborea	-	Tree
48	Euphorbiaceae	Baccaurea parviflora	Semambun	Tree
49	Euphorbiaceae	Croton caudatus	Alimpai	Shrub
50	Euphorbiaceae	Croton oblongus	Randang Jagong	Tree
51	Euphorbiaceae	Drypetes longifolia	Mintulang	Tree
52	Euphorbiaceae	Elateriospermum tapos	Perah	Tree
53	Fabaceae	Archidendron jiringa	Niang	Tree
54	Fabaceae	Callerya atropurpurea	Purple Milletia	Tree
55	Fabaceae	Cynometra malaccensis	Kekatong	Tree
56	Fabaceae	Fordia albiflora	-	Tree
57	Fabaceae	Pithecellobium bubalinum	Buah Kerdas	Tree
58	Fabaceae	Saraca thaipingensis	Gapis	Tree
59	Fabaceae	Sindora sp.	Sepetir	Tree
60	Fagaceae	Lithocarpus rassa	Berangan Babi	Tree
61	Icacinaceae	Gomphandra qudrafida	Bakok	Shrub
62	Ixonanthaceae	Ixonanthes icosandra	Pagar Anak	Tree
63	Lauraceae	Alseodaphne sp.	Nethane	Tree
64	Lauraceae	Cinnamomum mollissimum	Pokok Teja	Tree
65	Lauraceae	Dehaasia longipetiolata	-	Tree
66	Lecythidaceae	Barringtonia racemosa	Putat	Tree
67	Malvaceae	Scaphium macropodum	Kembang Semangkuk	Tree
68	Malvaceae	Scaphium scaphigerum	Kapas-kapas	Tree
69	Melastomataceae	Pternandra echinata	Sial Menahun	Tree
70	Meliaceae	Aglaia exstipulata	-	Tree
71	Meliaceae	Sandoricum koetjape	Kelampu Bukit	Tree
72	Moraceae	Artocarpus elasticus	Terap Nasi	Tree
73	Moraceae	Artocarpus scortechinii	Merawan	Tree
		-		

74	Moraceae	Streblus elongatus	Tempinis	Tree
7 5	Myristicaceae	Horsfieldia brachiata	-	Tree
76	Myristicaceae	Knema laurina	_	Tree
77	Myrsinaceae	Ardisia foliosa	_	Shrub
78	Myrsinaceae	Ardisia wrayi	Mata Pelanduk	Shrub
79	Myrtaceae	Syzygium claviflorum	Gelam	Tree
80	Myrtaceae	Syzygium grande	Kelat	Tree
81	Myrtaceae	Syzygium lineatum	Kelat Putih	Tree
82	Olacaceae	Ochanostachys amentacea	Petaling	Tree
83	Olacaceae	Scorodocarpus borneensis	Kulim	Tree
84	Pandanaceae	Pandanus sp.	Pandan Hutan	Shrub
85	Phyllantaceae	Antidesma cuspidartum	Sebasah	Tree
86	Phyllantaceae	Antidesma lycopodum	Jarupis	Tree
87	Phyllantaceae	Antidesma neurocarpum	Kemuning	Tree
88	Phyllantaceae	Antidesma orthogyne	Beberas Pachat	Shrub
89	Phyllantaceae	Antidesma sp.	-	Tree
90	Polygalaceae	Xanthophyllum bullatum	Nyalin	Tree
91	Polygalaceae	Xanthophyllum affine	Minyak Beruk	Tree
92	Polygalaceae	Xanthophyllum griffithii	Nyalin	Tree
93	Polygalaceae	Xanthophyllum rufum	Kayu Ampang	Tree
94	Rhizophoraceae	Gynothroces axillaris	Mata Keli	Tree
95	Rhizophoraceae	Pellacalyx saccardianus	Membuluh	Tree
96	Rubiaceae	Chassalia chartacea	Jejarum	Shrub
97	Rubiaceae	Chassalia curvifolia	Beberas	Shrub
98	Rubiaceae	Diplospora malaccensis	Kahwa Hutan	Tree
99	Rubiaceae	Gaertnera obesa	-	Shrub
100	Rubiaceae	Gaertnera oblanceolata	Mengudu	Tree
101	Rubiaceae	Ixora javanica	Jejarum	Shrub
102	Rubiaceae	Lasianthus griffithii	-	Shrub
103	Rubiaceae	Nauclea officinalis	Bebangka	Tree
104	Rubiaceae	Neonauclea lanceolata	Bengkal Udang	Tree
105	Rubiaceae	Urophyllum macrophyllum	-	Shrub
106	Rubiaceae	Urophyllum ferrugineum	-	Shrub
107	Sapindaceae	Xerospermum noronhianum	Menmangas	Tree
108	Sapotaceae	Madhuca malaccensis	Basong	Tree
109	Sapotaceae	Payena lanceolata	Nyatoh ekor	Tree
110	Sapotaceae	Payena lucida	Baringin Jiput	Tree
111	Sapotaceae	Payena obscura	-	Tree
112	Symplocaceae	Symplocos cerasifolia	-	Tree
113	Theaceae	Gordonia multinervis	-	Tree

114	Tiliaceae	Pentace floribunda	-	Tree
115	Tiliaceae	Pentace grandiflora	-	Tree
116	Tiliaceae	Schoutenia accrescens	Bayur Bukit	Tree
117	Verbenaceae	Vitex pinnata	Leban	Tree
118	Violaceae	Rinorea javanica	-	Tree
119	Unknown	Unknown sp.	-	Tree
	PTERIDOPHYTES			
120	Dryopteridaceae	Tectaria fissa	-	Fern
121	Dryopteridaceae	Tectaria singaporeana	Singapore Fern	Fern

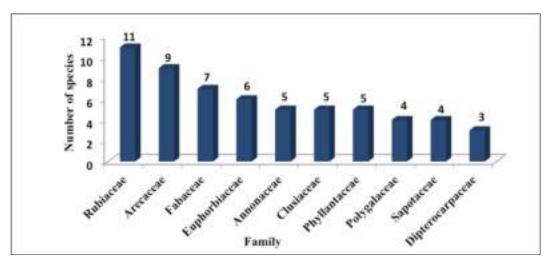


Figure 2: The highest families based on the number of species at Hutan Lipur Jeram Linang

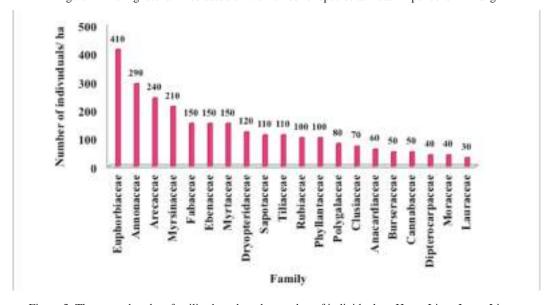


Figure 3: The most abundant families based on the number of individuals at Hutan Lipur Jeram Linang

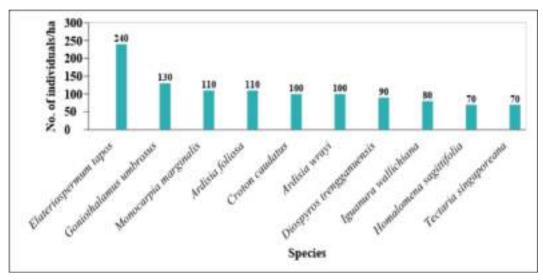


Figure 4: Ten most abundant species at Hutan Lipur Jeram Linang.

Community structure

Stem Diameter

The distribution of DBH classes showed reverse 'J' shape curve with 1800 ind/ha having DBH between 0.1-9.9 cm, 450 ind/ha or 15% of 10-19.9 cm dbh and 250 ind/ha of 20.0-29.9 cm DBH (Fig 5). Trees within class 0-9.9 cm DBH constituted an average of about 62% of individuals and the distribution for other classes declined dramatically in which 15%

of individuals belonged to the next higher range (10-19.9cm). However, several species i.e. *Cyathocalyx pruniferus*, *Dipterocarpus grandiflora*, and *Syzygium grandae* attained dbh > 60 cm represent 5% of the total individuals. The numbers of individual plants were decreasing with diameter size classes reflecting that this forest was high in regeneration as smaller dbh size tree dominated the forest more (Nizam *et al.* 2008).

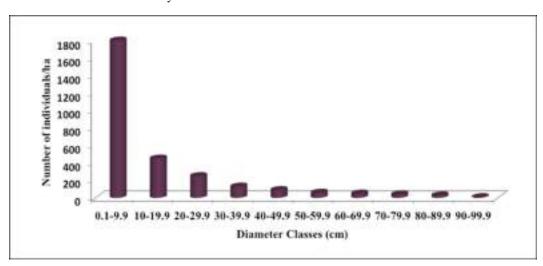


Figure 5: Distribution of trees per ha based on diameter size classes.

Importance Value Index (IVI)

The dominancy of species present in Hutan Lipur Jeram Linang was determined by calculating the Importance Value Index (IVI) for each species. Elateriospermum tapos, Goniothalamus umbrosus and Monocarpia marginalis were the most dominant species based on IVI of 14, 8 and 6 respectively. Ardisia foliasa, Iguanura wallichiana, Homolomena sagittifolia and Tectaria singaporeana were the most dominant species for shrubs, palms herbs and fern based on IVI=6, 5, 4 and 4 respectively. E. tapos was also the most dominant species recorded at Pasoh Forest Reserve (Kochumen et al. 1990) and Panti Forest Reserve (Nizam et al. 2009).

Species Diversity

In this study, the Shannon–Winner's index (H') of species diversity was 4.38 (Table 3). This study showed that the diversity index of the forest was within the range of other studies such as H'= 4.94 at Panti Forest Reserve, Johor (Nizam *et al.* 2009), H'=4.31 Bukit Belata Forest Reserve (Nizam *et al.* 2008) and H'=4.09 at Gunung Stong Forest Reserve (Nizam *et al.* 2008). However, the diversity index of the study area was higher than the study by Juliana *et al.* (2005) at Ulu Muda Forest Reserve (H'=3.02).

Table 3: Diversity indices from different forest reserve

Location	Shahnon Weiner diversity index H'
Ulu Muda Forest Reserve (Juliana <i>et al.</i> 2005)	3.02; 3.84
Bukit Belata Forest Reserve (Nizam <i>et al.</i> 2008)	4.31
Panti Forest Reserve (Nizam <i>et al.</i> 2009)	4.94
This study	4.38

Conservation Status and Endemism

A total of 19 species from this study are listed in the IUCN Red List (Table 4). Dipterocarpus cornitus and Shorea collina fall under Critically Endangered category whilst Dipterocarpus grandiflorus is under endangered category. Species under these categories are facing high risk of extinction. Goniothalamus umbrosus, Xantophyllum bullatum, Gordonia multineris and Sindora sp. are listed as vulnerable species. There are a number of ecological reasons as to why Dipterocarps may be sensitive to habitat degradation and fragmentation. Many species of Dipterocarpaceae have a low density of reproductive adults as they are insectpollinated with recalcitrant seeds, the traits of which are likely to reduce the resilience of Dipterocarp forest to fragmentation (Aguilar et al. 2006). Therefore, the reduction in forest cover is leading directly to the endangerment, and local extinction of many plant and animal species (Sodhi et al. 2010), which may include Dipterocarp. Urgent attention is needed on the species that face higher risk of extinction, to prevent further reduction in their number of individuals which may lead to the local extinction.

In terms of endemism, 24 species represented by 20% from total identified species in this study were endemic to Peninsular Malaysia (Table 5). Of all endemic species, 67% belong to trees (16 species), 21% shrubs (5 species), 8% palms (2 species) and 4% herbs (1 species). The investigation of endemism and the conservation status of the species are getting increasingly important with issues of plant conservation to be dealt under current forest management practices (Faridah Hanum, 1999).

Table 4: Total species red-listed based of IUCN Red List within 0.1 ha at Hutan Lipur Jeram Linang

No.	Family	Species	Conservation status
1	Dipterocarpaceae	Dipterocarpus cornutus	Critically Endangered
2	Dipterocarpaceae	Dipterocarpus grandiflorus	Endangered
3	Dipterocarpaceae	Shorea collina	Critically Endangered
4	Meliaceae	Aglaia exstipulata	Near Threatened
5	Annonaceae	Goniothalamus sp.	Vulnerable
6	Annonaceae	Goniothalamus umbrosus	Vulnerable
7	Fabaceae	Sindora sp.	Vulnerable
8	Polygalaceae	Xanthophyllum bullatum	Vulnerable
9	Theaceae	Gordonia multinervis	Vulnerable
10	Anacardiaceae	Mangifera gracilipes	Least Concern
11	Anacardiaceae	Swintonia robinsonii	Least Concern
12	Anisophylleaceae	Anisophyllea disticha	Least Concern
13	Annonaceae	Cyathocalyx pruniferus	Least Concern
14	Burseraceae	Canarium littorale	Least Concern
15	Ebenaceae	Diospyros trengganuensis	Least Concern
16	Lauraceae	Cinnamomum mollissimum	Least Concern
17	Malvaceae	Scaphium macropodum	Least Concern
18	Rhizphoraceae	Pellacalyx saccardianus	Least Concern
19	Tiliaceae	Pentace grandiflora	Least Concern

Table 5: List of endemic species in 0.1 ha of Hutan Lipur Jeram Linang

No.	Family	Species	Endemic place
1	Anacardiaceae	Mangifera gracilipes	Peninsular Malaysia
2	Anacardiaceae	Swintonia robinsonii	Kelantan, Terengganu, Pahang
3	Annonaceae	Cyathocalyx pruniferus	Peninsular Malaysia
4	Annonaceae	Goniothalamus umbrosus	Penang, Kelantan, Terengganu
5	Arecaceae	Licuala sallehana	Terengganu
6	Arecaceae	Pinanga scortechinii	Peninsular Malaysia
7	Aristolochiaceae	Thottea dependens	Peninsular Malaysia
8	Burseraceae	Dacryodes longifolia	Peninsular Malaysia
9	Clusiaceae	Mesua lepidota	Peninsular Malaysia
10	Dilleniaceae	Dillenia reticulata	Malacca
11	Dipterocarpaceae	Shorea collina	Malaysia
12	Ebenaceae	Diospyros trengganuensis	Terengganu
13	Fabaceae	Fordia albiflora	Peninsular Malaysia
14	Lauraceae	Alseodaphne sp.	Peninsular Malaysia
15	Lauraceae	Cinnamomum mollissimum	Peninsular Malaysia
16	Myrisanaceae	Ardisia foliosa	Johor, Perak, Kelantan

17	Myrisanaceae	Ardisia wrayi	Peninsular Malaysia
18	Polygalaceae	Xanthophyllum bullatum	Terengganu, Perak, Selangor
19	Rhizophoraceae	Pellacalyx saccardianus	Peninsular Malaysia
20	Rubiaceae	Gaertnera obesa	Peninsular Malaysia
21	Rubiaceae	Ixora javanica	Peninsular Malaysia
22	Rubiaceae	Urophyllum ferrugineum	Pahang, Johor
23	Theaceae	Gordonia multinervis	Peninsular Malaysia
24	Tiliaceae	Pentace grandiflora	Terengganu

Medicinal Value

Hutan Lipur Jeram Linang harbours high richness of medicinal species. 47 out of 120 species from 30 families recorded at Hutan Lipur Jeram Linang possessed medicinal properties (Table 6). The three most diverse medicinal families collected across all categories were Rubiaceae,

followed by Euphorbiaceae and Fabaceae. Of all the medicinal plants, 68% belong to trees (26 species), 16% shrubs (16 species), 8% palms (3 species), 5% herbs (2 species) and 3% fern (species).

Table 6: List of plants with medicinal values at Hutan Lipur Jeram Linang and their uses

Species	Uses
Anisophyllea disticha	Used for gastrointestinal problems
Antidesma orthogyne	Used as an antiseptic
Aralidium pinnatifidium	Used traditionally to treat fever
Archidendron jiringa	Used as poultice for skin problems and chest pains
Arenga pinnata	Used for Sore throat and cold sores
Artocarpus elasticus	Used in anticancer activity
Artocarpus scortechinii	Used to cure stomach-ache.
Baccaurea parviflora	Used to ease urinating
Barringtonia racemosa	Used for skin itches, chicken pox, alone or with bark or root
Chassalia chartacea	Malaria, coughs, childbirth, cuts, wounds and ulcers.
Chassalia curviflora	Used for antibacterial activity
Cinnamomum mollissimum	Used for antifungal activity
Croton caudatus	Applied as poultice in sprains, diuretic
Diospyros lanceifolia	Cure ill waist.
Diospyros sumatrana	Used as a protective medicine after childbirth
Elateriospermum tapos	Use the latex to heal crack wounds
Gironniera hirta	After childbirth as a protective medicine

Conclusion

This study showed that Hutan Lipur Jeram Linang has a diverse population of vascular plants. A total of 121 species comprising 87 genera and 47 families were found within the study site. Our results indicated that this forest comprises plant species with high conservation status, high plant endemism and plants with medicinal properties. Therefore, proper management is important to maintain and preserve the forest from exploitation and destruction.

Acknowledgements

The authors gratefully acknowledge the Forestry Department of Kelantan and Universiti Malaysia Terengganu for supporting Jivitra Balu during her undergraduate dissertation study. We also would like to thanks to Mr Haji Muhammad Razali Bin Salam for his assistance and guidance during fieldwork and identification of the species collected during the fieldwork.

References

- Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M.A. (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. *Ecological Letter*, 9:968–980.
- Bidin, A. A & Latiff, A. (1995) The status of terrestrial biodiversity in Malaysia. In: Zakri, A. H. Eds. *Prospects in biodiversity* prospecting. Bangi: Genetic Society of Malaysia and Universiti Kebangsaan Malaysia. pp. 59-76.
- Burkill, I.H. (1935) *Economic Products of Malay Peninsula*. London: Crown Agent for the Colonies. 2.
- Cottam, G. and Curtis. J. T. (1956) The use of distance measures in phytosociological sampling. *Ecology*, 37: 451-460.

- Handa, S.S., Rakesh, D.D. and Vasisht, K. (2006) Compendium of Medicinal and Aromatic Plants Asia. United Nations Industrial Development Organization and the International Centrefor Science and High Technology, 2006.
- IUCN. (2010) IUCN Red List of threatened species. Version 2010.3. Available at: http:// www.iucnredlist.org (accessed 2 April 2012).
- JPSM, 2010. http://www.forestry.gov. my/index.php/ms.html. (09 March 2012).
- Juliana, W.A., M.S. Nizam, A.Raffae & S.B. Siti Najmi. (2005) Komposisi dan Kepelbagaian spesies pokok dalam dua habitat berbeza di Hutan Simpan Ulu Muda. In: Shahruddin, Ml et al. (Eds). Hutan Simpan Ulu Muda, Kedah: Pengurusan, Persekitaran Fizikal dan Biologi Hutan. Siri Kepelbagaian Biologi Hutan 3: 292-305.
- Kochumen, K. M., LaFrankie, J. V, & Manokaran, N. (1990). Floristic composition of Pasoh Forest Reserve, a lowland rain forest in floristic composition of Pasoh Forest Reserve, a lowland rain forest in peninsular. *Journal of Tropical Forest Science*. 3(1): 1-13.
- Latiff, A. (2011) Loss of Biodiversity And Resources due to Forest Exploitation and Degradation. *Rehabilitation of Tropical Rainforest Ecosystems*. Kuala Lumpur: Mitsubishi Corporation. pp. 137-144.
- Magurran A. E. (1988) *Ecological Diversity* and *Its Measurement*. Chapman and Hall, London. 179 pp.
- Masran M.S. & Samsudin M. (1996) Issues on the inventory and management of tropical forests in Malaysia. In: Haron A. H., Chin Y. M. and Nasaruddin R. Eds. *Multiple Resource Inventory And Monitoring Of Tropical Forests*. ASEAN Institute of Forest Management, 83-96 pp.

- Ng, F.S.P. (ed.) 1978. Tree Flora of Malaya. Volume 3. Malayan Forest Records No. 26. Longman Malaysia Sdn. Bhd., Kuala Lumpur. 339 pp.
- Ng, F.S.P. (ed.) 1989. Tree Flora of Malaya. Volume 4. Malayan Forest Records No. 26. Longman Malaysia Sdn. Bhd., Petaling Jaya. 549 pp.
- Ng F. S. P., Low C. M. & Mat Asri N. S. 1990. Endemic trees of the Malay Peninsula. Research Pamphlet 106, Forest Research Institute Malaysia, Kuala Lumpur.
- Nizam, M.S., Nur Maisarah, J., Jildred, J & W.A. Wan Juliana. (2008) Komposisi, Kepelbagaian dan Biojisim Komuniti Pokok di hutan Simpan Bukit Belata. In: Azahar Muda *et al.* (Eds). Bukit Belata, Selangor: Pengurusan, Persekitaran Fizikal, Kepelbagaian biologi dan Sosioekonomi. Siri Kepelbagaian Biologi Hutan 9: 134-151.
- Nizam, M.S., A., Azyela, K.Shamsul & W.A. Wan Juliana. (2009) Struktur komuniti dan biojisim pokok di Hutan Simpan Panti. In: Razani Ujang *et al.* (Eds). Hutan Simpan Panti, Johor: Pengurusan Hutan, Persekitaran Fizikal & Kepelbagaian Biologi. Siri Kepelbagaian Biologi Hutan 11: 150-163.

- Parris, B.S. & Latiff. A. (1997) Towards a pteridophyte flora of Malaysia: A provisional checklist of taxa. *Malaysians Nature Journal* 50 (4): 12 – 45.
- Ridley, H.N. 1922-1925. Flora of Malay Peninsular. (1-5). London: L. Reeve & Co. Ltd. 918 pp.
- Sodhi, N. S., Posa, M. R. C., Lee, T. M., Bickford, D., Koh, L. P. & Brook. B. W. (2010) The state and conservation of Southeast Asian. Biodiversity. Biodiversity Conservation 19: 317–328.
- Turner. I. M. (1995) A catalogue of vascular plants of Malaya. *Gardens Bulletin of Singapore*, 47 (1 & 2): 1-757.
- Whitmore, T.C. (ed.) 1972. Tree Flora of Malaya. Volume 1. Malayan Forest Records No. 26. Longman Malaysia Sdn. Bhd., Kuala Lumpur. 471 pp.
- Whitmore, T.C. (ed.) 1973. Tree Flora of Malaya. Volume 2. Malayan Forest Records No. 26. Longman Malaysia Sdn. Bhd., Kuala Lumpur. 444 pp.