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Abstract: This paper aims at solving an optimization problem in the presence of 

heavy tail behavior of financial assets. The question of minimizing risk subjected 

to a certain expected return or maximizing return for a given expected risk are two 

objective functions to be solved using Markowitz model. The Markowitz based 

strategies namely the mean variance portfolio, minimum variance portfolio and 

equally weighted portfolio are proposed in conjunction with mean and variance 

analysis of the portfolio. The historical prices of stocks traded at Bursa Malaysia 

are used for empirical analysis. We employed CAPM in order to investigate the 

performance of the Markowitz model which was benchmarked with risk adjusted 

KLSE Composite Index. We performed a backtesting study of portfolio 

optimization techniques defined under modern portfolio theory in order to find the 

optimal portfolio. Our findings show that the mean variance portfolio 

outperformed the other two strategies in terms of performance of investment for 

heavy tailed assets. 
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Introduction 

 

Since 1960s, normality assumption on returns 

of financial asset has been used in many 

financial models even in a work by Black and 

Scholes (1973). Such assumption provides a 

basis for explaining the evolution of asset 

prices and measuring the market risk. However, 

highly peaked nature of particular asset prices 

was recognized by Mandelbrot (1963) which 

provides an indication of non-normality 

behavior of the prices. In addition, a stylized 

fact of heavy tailed is observed in many 

empirical studies for instance in the paper by 

Marinelli et al. (2001) and Weron (2008). 

Recently, several papers such as Oden et al. 

(2017), Neykov et al. (2014), Dong et al. 

(2015), Benth and Taib (2013) and Benth et al. 

(2015) are discussing this critical issue in view 

of financial assets and commodities.  

The heavy tailed asset refers to the financial 

asset in which returns often possess distribution 

with tails heavier than those of the normal 

distribution (see Mandelbrot (1963)). It has 

implication on the risk management of the 

financial institution since the acceptance of 

normally distributed assumption on asset 

returns may lead to a poor decision, for instance 

in calculating Value-at-Risk (VaR) (see for 

example a study by Benth et al. (2015)). We 

may observe different VaR values if calculated 

for a heavy-tailed distribution compared to the 

normal especially for high quantiles of the 

distribution. 

 

This paper suggested portfolio optimization 

strategy based on Markowitz (1952) model 

which aims to allocate the assets genuinely for 

portfolio diversification. According to Amu 

and Millegard (2009), the chosen assets and 

risk factors are important in portfolio theory 
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since there is no guarantee for profit in the 

model. Markowitz model determines the 

efficient set of the portfolio through return, 

standard deviation (or variance) and coefficient 

of correlation. Since its introduction, the 

approaches of mean variance, minimum 

variance and equally-weighted became the 

industry standard for asset allocation.  

 

In the mean variance portfolio, the impact 

of parameter uncertainty on the portfolio 

selection is one of the main directions of related 

research. It has been recognized by Frankfurter 

et al. (1971) and Jobson and Korkie (1980), 

who revealed that the estimation error 

obstructed the practical application of portfolio 

analysis especially in expected returns. This 

supports Michaud (1989) claims of mean 

variance portfolio as a “non-financial 

optimizer” regardless of the benefits of mean 

variance optimization method. Such 

optimization is likely to maximize the effect of 

estimation errors because it estimates the high 

weight of assets with high expected return, 

small variance and negative correlation. 

According to Chopra and Ziemba (1993), the 

high sensitivity and instability of the estimated 

mean variance portfolio to estimation errors in 

the expected returns and covariance may lead 

to non-robust results and consequently poor 

performance in terms of their out-of-sample 

mean and variance. In a paper by DeMiguel and 

Nogales (2009), their numerical results 

illustrate the dangerous circumstances of using 

estimates of mean returns for portfolio 

selection.  

 

Jorion (1986) and Jagannathan and Ma 

(2003) have proposed the minimum variance 

portfolio which relies only on estimation of 

covariance matrix and not so sensitive to the 

estimation error. Several studies on minimum 

variance portfolio are concentrated on highly 

developed markets (see Bork and Jonsson, 

2011). A paper by Haugen and Baker (1991) 

has constructed a low volatility and long-only 

portfolio with sensible portfolio constraints 

when short selling is restricted. It is found that 

the portfolio with lower volatility outperformed 

the market portfolio in terms of higher return 

and lower volatility (this phenomenon is known 

as volatility anomaly). An extension work of 

Haugen and Baker (1991) by Clarke et al. 

(2006) include a larger time frame and also the 

econometric techniques to estimating 

covariance matrix. Their findings support the 

argument of low volatility anomaly. Chopra 

and Ziemba (1993) found that estimation error 

is significantly less than the generated when 

estimating means. Hence, estimation risk 

related to minimum variance portfolio is 

comparatively lesser than mean variance 

portfolio. This implies that there is no 

estimation error contributed from the sample 

mean because minimum variance portfolio 

depends only on the covariance matrix as an 

input.  

 

The drawback of portfolio concentration in 

minimum variance portfolio may be resolved 

using equally-weighted portfolio which 

incorporates the same weight to attribute for all 

assets in the portfolio. A weight of 
1

𝑁
  is 

allocated to each asset at each rebalancing date 

for 𝑁 available assets. The approach of equally-

weighted portfolio works better than minimum 

variance portfolio in terms of Sharpe ratio (see 

DeMiguel et al. (2009a, 2009b)). Therefore, it 

would serve as a natural benchmark because of 

its simplicity and low implementation costs. On 

the other hand, an approach of CAPM which is 

discovered by Sharpe (1964) and Lintner 

(1965) is used by investors to estimate the 

expected return or the performance of stocks in 

a portfolio. The CAPM employs prediction of 

risk and the relation between expected return 

and risk (see Treynor (1999). 

 

Methods 

 

For any distribution 𝐹 on ℝ, the tail function �̅� 

is expressed as  

 

�̅�(𝑥) = 𝐹(𝑥,∞), 𝑥 ∈ ℝ 
 

where 𝐹(𝑥) = ℙ(𝑋 ≤ 𝑥) and �̅�(𝑥) = 1 −
𝐹(𝑥). For all 𝜖 > 0, a heavy tailed distribution 

is given by (see Foss et al. (2013)) 

2



WONG GHEE CHING AND CHE MOHD IMRAN CHE TAIB 

Universiti Malaysia Terengganu Journal of Undergraduate Research 

Volume 1 Number 3, Julai 2019: 1-14 

∫𝑒𝜖𝑥𝐹(𝑑𝑥) = ∞, 

 

or equivalently  

 
ℙ(𝑋 > 𝑥)

𝑒−𝜖𝑥
→ ∞. 

 

A heavy tail that is possessed by the Pareto 

distribution is given by (see Pareto (1897)) 

 

𝜌𝛼(𝑥,∞) = 𝑥−𝛼, 𝑥 ≥ 1 
 

where 𝑋 has a Pareto tail with index 𝛼 > 0. 

Generally, 𝑋 has a heavy tailed distribution 𝐹 if  

 

ℙ(𝑋 > 𝑥) = 𝑥−𝛼𝐿(𝑥) 
 

where 𝐿 is slowly varying, 

 

lim
𝑡→∞

𝐿(𝑡𝑥)

𝐿(𝑡)
= 1 , 𝑥 > 0. 

 

Thus, tails of stable distribution of regularly 

varying with index – 𝛼 is denoted by 

  

1 − 𝐹(𝑥)~𝑥−𝛼, 𝑥 → ∞. 
 

 

Mean Variance Portfolio 

 

Assume there are 𝑁 risky assets. At any 

particular time 𝑡 ∈ ℝ+, the rate of return 𝑅𝑖(𝑡) 

for the stock price 𝑆𝑖, (𝑖 = 1, … , 𝑁) is 

calculated as 

 

𝑅𝑖(𝑡) =
𝑆𝑖(𝑡) − 𝑆𝑖(𝑡 − 1)

𝑆𝑖(𝑡 − 1)
, 

 

satisfying  𝑅𝑖~𝒩(�⃑�, Σ⃑⃑) where �⃑� =

(𝜌1 𝜌2 ⋯ 𝜌𝑁) and Σ⃑  is the covariance 

matrix.  It is also convenient to represent 𝑅𝑖(𝑡) 

in terms of geometric rate of return as 

 

             𝑅𝑖(𝑡) = ln 𝑆(𝑡) − ln 𝑆(𝑡 − 1).        (1) 

 

We denote 𝜔𝑖 as the weight for asset 𝑖, 𝜔 =
(𝜔1 …𝜔𝑁)Τ and ∑ 𝜔𝑖

𝑁
𝑖=1  . The optimal 

portfolio weights are obtained where the 

portfolio achieves an acceptable baseline 

expected rate of return with minimal volatility 

in the context of Markowitz theory.  

 

The rate of return of the portfolio, 𝑅𝑝 is 

given as 

𝑅𝑝 = ∑𝜔𝑖𝑅𝑖

𝑁

𝑖=1

. 

 

There are two moments of portfolio’s rate of 

return 𝑅𝑝, which are portfolio mean 𝜇𝑝 and 

portfolio variance 𝜎𝑝
2 being considered in the 

mean variance analysis. Assume that the mean 

𝜇𝑖 and volatility 𝜎𝑖 of asset i, and the covariance 

of asset i and j, 𝜎𝑖𝑗 are known in the mean 

variance analysis. Then, portfolio mean is 

expressed as 

𝜇𝑝 = Ε(𝑅𝑝) 

                = ∑Ε(𝜔𝑖𝑅𝑖)

𝑁

𝑖=1

 

         = ∑𝜔𝑖𝜇𝑖

𝑁

𝑖=1

 

 

where 𝜇𝑖 = 𝜌𝑖 and the portfolio variance is 

𝜎𝑝
2 = 𝑉𝑎𝑟(𝑅𝑝) 

                             = ∑∑𝜔𝑖𝜔𝑗𝑐𝑜𝑣(

𝑁

𝑗=1

𝑁

𝑖=1

𝑅𝑖, 𝑅𝑗) 

                   = ∑∑𝜔𝑖𝜔𝑗𝜎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

. 

 

Using notation Σ⃑⃑ and �⃑⃑⃑� for the respective 

covariance matrix and vector of portfolio’s 

weight, the portfolio variance can be simply 

represented as 

𝜎𝑝
2 = �⃑⃑⃑�ΤΣ⃑⃑�⃑⃑⃑�. 

The mathematical formulation of mean 

variance optimization (see Markowitz (1952)) 

is 

min
𝜔

                 
1

2
∑∑𝜔𝑖𝜔𝑗𝜎𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

       subject to      ∑ 𝜔𝑖
𝑁
𝑖=1 𝜌𝑖 = 𝜇𝑝 

    ∑ 𝜔𝑖 = 1𝑁
𝑖=1  

3
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where 𝜌𝑖 is the reward that will depend on the 

risk aversion of the investor or on the rate of 

return. In mean variance optimization, two 

constraints are needed in order to minimize the 

risk, 𝜎𝑝
2 for any given expected return. Such 

optimization problem is solved using 

Lagrange multiplier method, represented as 

 

ℒ =
1

2
∑∑𝜔𝑖𝜔𝑗𝜎𝑖𝑗 − 𝜆1 (∑𝜔𝑖 − 1

𝑁

𝑖=1

)

𝑁

𝑗=1

𝑁

𝑖=1

 

         −𝜆2 (∑𝜔𝑖𝜌𝑖 − 𝜇𝑝

𝑁

𝑖=1

),                       (2) 

 

where 𝜆1 and 𝜆2 are the budget multiplier and 

the reward multiplier respectively (usually 

known as Lagrangian multipliers). The ℒ is 

differentiated with respect to 𝜔𝑖, 𝜆1 and 𝜆2. By 

setting derivative equal to zero, we have 

 

𝜕ℒ

𝜕𝜔𝑖
= ∑𝜎𝑖𝑗𝜔𝑗 −

𝑁

𝑗=1

𝜆1 − 𝜆2𝜌𝑖 = 0,         (3) 

𝜕ℒ

𝜕𝜆1
= ∑𝜔𝑖 − 1

𝑁

𝑖=1

 = 0                              (4) 

𝜕ℒ

𝜕𝜆2
= ∑𝜔𝑖𝜌𝑖 − 𝜇𝑝

𝑁

𝑖=1

= 0.                        (5) 

 

From Eq. 3, the portfolio weight vector is 

given by  

�⃑⃑⃑�𝑝 = Σ⃑⃑−1(𝜆11⃑⃑ + 𝜆2�⃑�), 
 

where 1⃑⃑ = (1 1⋯ 1)Τ. By applying the 

following two constraints, 

 

  1 = 1⃑⃑ΤΣ⃑⃑−1Σ⃑⃑�⃑⃑⃑�𝑝 = 𝜆11⃑⃑
ΤΣ⃑⃑−11⃑⃑ + 𝜆21⃑⃑

ΤΣ⃑⃑−1�⃑� 

𝜇𝑝 = �⃑�ΤΣ⃑⃑−1Σ⃑⃑�⃑⃑⃑�𝑝 = 𝜆1�⃑�
ΤΣ⃑⃑−11⃑⃑ + 𝜆2�⃑�

ΤΣ⃑⃑−1�⃑� 

 

the values 𝜆1 and 𝜆2 can be determined. Let 

𝛼 = 1⃑⃑ΤΣ⃑⃑−11⃑⃑, 𝛽 = 1⃑⃑ΤΣ⃑⃑−1�⃑�, 𝛾 = �⃑�ΤΣ⃑⃑−1�⃑�, then 

we obtain  

                      1 = 𝜆1𝛼 + 𝜆2𝛽                      (6) 

                    𝜇𝑝 = 𝜆1𝛽 + 𝜆2𝛾.                     (7) 

 

Then, by solving 𝜆1 and 𝜆2 simultaneously 

from the Eq. 6 and Eq. 7, we obtain 

𝜆1 =
𝛾 − 𝛽𝜇𝑝

𝛼𝛾 − 𝛽2
 

𝜆2 =
𝛼𝜇𝑝 − 𝛽

𝛼𝛾 − 𝛽2
. 

 

Since Σ⃑⃑ is positive definite, thus 𝛼, 𝛾 > 0. 

By Cauchy-Schwarz inequality, 𝛼𝛾 − 𝛽2 > 0. 

The portfolio variance 𝜎𝑝
2 for a given value of 

𝜇𝑝 is given by  

𝜎𝑝
2 = �⃑⃑⃑�𝑝

𝑇
Σ⃑⃑�⃑⃑⃑�𝑝 

      = �⃑⃑⃑�𝑝
𝑇
Σ⃑⃑(𝜆1Σ⃑⃑

−11⃑⃑ + 𝜆2Σ⃑⃑
−1�⃑�) 

      = 𝜆1 + 𝜆2𝜇𝑝 

      =
𝛼𝜇𝑝

2 − 2𝛽𝜇𝑝 + 𝛾

𝛼𝛾 − 𝛽2
. 

 

Minimum Variance Portfolio  
 

The portfolio’s expected return 𝜇𝑝 is the 

weighted average of individual asset returns 

given by 

𝜇𝑝 = ∑𝜇𝑖𝜔𝑖

𝑁

𝑖=1

= �⃑�𝑇 �⃑⃑⃑�. 

 

The positive semi-definite covariance matrix 

of asset returns denoted by Σ⃑⃑ is represented as 

 

Σ⃑⃑ = [

𝜎1,1 ⋯ 𝜎1,𝑁

⋮ ⋱ ⋮
𝜎𝑁,1 ⋯ 𝜎𝑁,𝑁

], 

 

where 𝜎𝑖,𝑖 is the variance of the return of asset 

𝑖, and 𝜎𝑖,𝑗 is the variance of return of asset 𝑖 

and 𝑗. Thus, the portfolio return’s variance, 𝜎𝑝
2 

is  

 

𝜎𝑝
2 = ∑∑𝜔𝑖𝜔𝑗𝜎𝑖𝜎𝑗𝜌𝑖,𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

                    = �⃑⃑⃑�𝑇 Σ⃑⃑ω⃑⃑⃑.                                   (8) 

 

The Eq. 8 is used as the objective function. 

Two constraints are needed in order to 

minimize the risk for any given expected 

return with consideration for positive and 

negative weights. A negative weight 

corresponds to a short-selling position, which 

is not allowed in certain investment 

4
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environment. Therefore, the first constraint is 

no short-selling position. The second 

constraint is full investment to ensure that all 

money available for the investment is 

completely allocated. Mathematically, the 

constraints are defined as 

 

Long-only investment: �⃑⃑⃑�𝑖 ≥ 0, ∀𝑖 
Full investment:  

∑𝜔𝑖

𝑁

𝑖=1

= �⃑⃑⃑�𝑇 1⃑⃑ = 1,       1⃑⃑ = (1 1… 1)Τ. 

 

Hence, the minimum variance portfolio is 

found by solving the quadratic equation with 

risky assets to produce the portfolio with 

lowest risk as 

min
𝜔

           �⃑⃑⃑�𝑇 Σ⃑⃑�⃑⃑⃑� 

       subject to  �⃑⃑⃑�𝑇 1⃑⃑ = 1 

                       �⃑⃑⃑�𝑖 ≥ 0. 
 

Such optimization problem is solved by 

Lagrangian method. Using Lagrangian 

multiplier 𝜆, the minimum variance portfolio 

is solved as 

 

    ℒ(�⃑⃑⃑�, 𝜆) = �⃑⃑⃑�𝑇 Σ⃑⃑�⃑⃑⃑� − 𝜆(�⃑⃑⃑�𝑇 1⃑⃑ − 1).       (9) 

 

Taking the partial derivatives for 𝜔 and 𝜆 of 

Eq. 9 and by equating to zero, 

 

         
𝜕ℒ(�⃑⃑⃑�, 𝜆)

𝜕�⃑⃑⃑�
: Σ⃑⃑ω⃑⃑⃑ − λ1⃑⃑ = 0,               (10) 

         
𝜕ℒ(�⃑⃑⃑�, 𝜆)

𝜕𝜆
: �⃑⃑⃑�𝑇 1⃑⃑ − 1 = 0.               (11) 

 

The above system is solved by substitution.  

From Eq. 10, �⃑⃑⃑� = 𝜆Σ⃑⃑−11⃑⃑. The respective �⃑⃑⃑� is 

substituted into Eq. 11 to obtain 𝜆 =
1

(1⃑⃑ ′ Σ⃑⃑⃑−11⃑⃑ )
. 

The final minimum variance portfolio weight 

vector is given by 

�⃑⃑⃑�𝑝 =
Σ⃑⃑−11⃑ 

(1⃑ ′Σ⃑⃑−11⃑ )
. 

 

Equally-weighted Portfolio 

 

The use of equally-weighted portfolio is 

simpler compared to the other two 

aforementioned strategies due to its 

independency from historical returns. In this 

paper, the index is constructed by allocating a 

“
1

2
” portion of the portfolio to each of the two 

assets when the weighted index is rebalanced. 

The expected return for equally weighted 

portfolio is the sum of the expected returns to 

the assets divided by the number of assets. The 

variance of equally-weighted portfolio is 

denoted as 

𝜎𝑝
2 =

1

𝑁
𝜎2 +

𝑁 − 1

𝑁
Σ̅ , 

 

where 𝑁 is the number of assets in the portfolio, 

𝜎2 is the average variance of the assets, and Σ̅ 

is the average covariance of the assets. 

 

Capital Asset Pricing Model (CAPM) 

 

The central insight of CAPM is that the 

riskiness of an asset is measured by its market 

beta but not by the standard deviation in 

equilibrium. Let 𝑅𝑚, 𝑅𝑝 and 𝑅𝑠 be the market’s 

simple return, portfolio’s simple return and 

stock’s simple return respectively.  There is a 

linear relationship between expected return of 

portfolio and expected return of market, given 

by 

𝔼(𝑅𝑠) = 𝑟𝑓 + 𝛽[𝔼(𝑅𝑚) − 𝑟𝑓] 

 

where 𝔼 denotes an expectation, 𝑟𝑓 is the risk 

free rate and 𝛽 is the stock’s beta expressed 

as 

𝛽 ≔
cov(𝑅𝑠,𝑅𝑚)

Var(𝑅𝑚)
. 

 

Performance Evaluation 

 

A number of performance metrics are used to 

measure the attractiveness of implementing the 

mean variance portfolio, min variance 

portfolio, and equally-weighted portfolio by 

measuring the returns compared to the 

benchmark risk-adjusted basis. Sharpe ratio 

and Treynor ratio are used to measure the risk-

return tradeoff. The Sharpe ratio is computed as 

the difference between mean return with the 

risk-free rate divided by the total risk of the 

portfolio, or simply (see Sharpe (1964)) 

5
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Sharpe ratio =
𝑅𝑝 − 𝑟𝑓

𝜎𝑝
. 

 

The higher value of Sharpe ratio, the more 

attractive is the risk-adjusted return. Active 

premium is a measure of the annualized return 

of the benchmark subtracted by the investment 

annualized return to yield the investment’s gain 

or loss that is over or under the benchmark. The 

positive active premium is good whereas the 

negative active premium is poor.  

 

Treynor ratio (also known as reward-to-

volatility ratio) is a risk-adjusted measurement 

of return and is calculated as average return of 

a portfolio, 𝑅𝑝 minus the average return of risk-

free rate, 𝑟𝑓 divided by beta of the portfolio, 𝛽𝑝, 

or simply (see Treynor (1999)) 

 

Treynor ratio =
𝑅𝑝 − 𝑟𝑓

𝛽𝑝
. 

 

The maximum drawdown, MDD is also 

used to calculate the maximum percentage loss 

of the portfolio value. In mathematical 

notation, MDD is expressed as 

MDD = min
∀ 𝑡,𝑇

(∏𝑟𝑖,𝑡 − 1

𝑇

𝑡

). 

 

The maximum drawdown is important to 

investor in identifying the worst possible 

scenarios which allow investor to identify the 

required recovery rate to balance with their 

previous high recorded value. Moreover, 

Jensen’s alpha is constructed in CAPM which 

is used to measure the performance of an 

investment strategy. It is the one factor market 

model that the excess return of an investment 

relative to the return of a benchmark and often 

used in conjunction with beta. Given 

parameters 𝜇𝑅𝐷 as mean return of dependent 

variable and 𝜇𝑅 as mean return of independent 

variable, the values of alpha 𝑎 and annualized 

alpha 𝐴 are calculated as 

𝑎 = 𝜇𝑅𝐷 − 𝛽 × 𝜇𝑅 
𝐴 (monthly data) = ((1 + 𝑎)12) − 1. 

The information ratio, IR, is more or less 

similar to the Sharpe ratio where both are used 

to evaluate the risk-adjusted rate of return of a 

portfolio. The information ratio is computed as 

return of the portfolio less the return of its 

benchmark with its tracking error, 

 

IR =
𝑅𝑝 − 𝑅𝑖

𝑆𝑝−𝑖
, 

 

where 𝑅𝑖 is the return of its benchmark and 𝑆𝑝−𝑖 

is the tracking error. The tracking error is the 

standard deviation of the difference between 

return of the portfolio and the return of its 

benchmark. In order to get a high information 

ratio, the tracking error must be small, so that 

the volatility is low and thus the information 

ratio is high. The higher the information ratio, 

the better the consistency. 

 

Results and Discussion 

Empirical Analysis of Stock Prices 

 

In Figure 1, we plotted the time series of stock 

prices of Maybank together with Public Bank 

for 10 years starting from January 1, 2007 until 

December 31, 2016. Both time series show the 

increasing trend at different rates. These prices 

had a cascade effect during the period of 400 to 

600 days as a reflection of Global Financial 

Crisis during the financial year 2008-2009. The 

price of Maybank and Public Bank declined 

26.6% and 19.55% compared to 12.2% and 

41.94% respective gain in the previous 

financial year. It is also obvious that 

Maybank’s prices were highly volatile 

compared to the prices of Public Bank. 

 

Next, we computed the daily logarithmic 

returns of both assets using Eq. (1) as illustrated 

in Figure 2. We observed a volatility clustering 

property in both time series in which the 

amplitudes of price changed accordingly. In 

portfolio performance comparison, cumulative 

daily logarithmic returns were used as 

illustrated in Figure 3. 
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Figure 1: Time series of Maybank (top) and Public Bank (bottom) stock prices. 

 

The empirical distributions of logreturns 

are shown in Figure 4 together with fitted 

normal distribution. In Figure 5, we show the 

QQ-plot for the logarithmic returns of 

Maybank and Public Bank. The fitted normal 

distribution and QQ-plots clearly show that the 

tails of both returns distribution were heavier 

than the tails of normal distribution. These 

indicate that the increment of both asset prices 

had heavy-tailed behavior and deviated much 

from normality. 

 

Portfolio Optimization 

 

Table 1 (top) reports the optimal weights, 𝜔 

which were 0.226 and 0.774 and computed by 

minimum variance optimization for Maybank 

and Public Bank respectively. In Table 1 

(bottom) the reported optimal weights 

computed using mean variance optimization for 

Maybank and Public Bank were 0.204000 and 

0.796000 respectively.  

The risks to return of two portfolio 

combinations are plotted in Figure 6. The 

tradeoff between risk and return is the high risk 

is associated with a larger probability of high 

return, while low risk is associated to larger 

potential of low return. 

 

Backtest and Compute Return 

 

The backtesting of the portfolios throughout 

this research was accompanied with 

rebalancing strategy on a yearly basis or 250  
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Figure 2: Time series of logarithmic returns of Maybank (top) and Public Bank (bottom). 

 

 

 

 
Figure 3: The cumulative daily logarithmic returns of Maybank and Public Bank 
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Figure 4:  Density plot of logreturns of Maybank (top) and Public Bank (bottom) together with 

density of normal distribution. 

 

trading days of rolling periods. The backtest 

bought all stocks that passed the strategy on the 

start date of the backtest which was the date 

January 1, 2007. When the backtest balanced, 

the portfolio’s risk and return characteristics 

could be recaptured where it also gave equal 

portfolio weights to each stock in the strategy 

at each rebalance. Thus, rebalancing strategy is 

to minimize the risk rather than maximize the 

return in an asset allocation. We found that the 

optimized minimum variance and mean 

variance portfolio are 0.2 and 0.8 for Maybank 

and Public Bank respectively. 

 

 

Portfolio Performance 

 

Figure 7 shows the cumulative return for the 

strategies of min variance portfolio, mean 

variance portfolio and equally-weighted 

portfolio based on the first 6 years of research 

window from January 1, 2007 to December 31, 

2012 which is benchmarked with the risk 

Adjusted KLSE index.  The Adjusted KLSE 

index outperformed the three strategies during 

year 2008 to 2009. However, at the beginning 

of year 2010, simulated returns outperformed 

Adjusted KLSE index in which the time series 

of three strategies lie above the Adjusted KLSE 

index. 
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Figure 5: The QQ-plot of the logreturns of Maybank (top) and Public Bank (bottom). 

 

Table 2 reports the summary of backtest 

statistics for the min variance portfolio, mean 

variance portfolio, equally-weighted portfolio 

and Adjusted KLSE. The min variance 

portfolio has the highest annualized return of 

22.73% which outperforms the Adjusted 

KLSE. In addition, the strategy with highest 

annualized standard deviation of 0.1551 is 

equally-weighted portfolio. The min variance 

portfolio and mean variance portfolio are 

considered to have a good return since their 

Sharpe ratio is greater than 1. The mean 

variance portfolio has the smallest maximum 

drawdown of 0.2060 and on the other hand 

Adjusted KLSE has the worst drawdown of 

0.4686. These statistics indicate that mean 

variance portfolio is the most preferred 

strategy for its small investment losses. 

 

The set of returns generated by optimized 

min variance portfolio, mean variance 

portfolio and equally-weighted portfolio 

relative to risk Adjusted KLSE resulting in a 

set of measures which is related to excess 

return single index model or CAPM as shown 

in Table 3. The betas of the three strategies are 

lower than 1, which theoretically less volatile 

than the market. The annualized alpha of mean 

variance portfolio  
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Table 1: Optimal weights of minimum variance optimization (top) and mean variance 

optimization (bottom) 

Type 

 

Iteration 

Value of 

objective 

function, 𝒙∗ 

Best value 

𝑥1 𝑥2 

1 0.008413 0.226000 0.774000 

2 0.008413 0.226000 0.774000 

3 0.008413 0.226000 0.774000 

4 0.008413 0.226000 0.774000 

5 0.008413 0.226000 0.774000 

  

 
Figure 6: Risk to return 

 

 
Figure 7: Cumulative returns of min variance portfolio, mean variance portfolio and equally-

weighted portfolio together with Adjusted KLSE 

 

Type 

 

         Iteration 

Value of  

objective 

function, 𝒙∗ 

Best value 

𝑥1 𝑥2 

1 0.007805 0.204000 0.796000 

2 0.007805 0.204000 0.796000 

3 0.007805 0.204000 0.796000 

4 0.007805 0.204000 0.796000 

5 0.007805 0.204000 0.796000 
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Table 2: Backtest statistics for min variance portfolio (MinVP), mean variance portfolio 

(MeanVP), equally-weighted portfolio (EWP) and Adjusted KLSE (Adj. KLSE) 

 MinVP MeanVP EWP Adj. KLSE 

Annualized return 0.2273 0.2270 0.1281 0.0580 

Annualized standard 

deviation 

0.1235 0.1232 0.1551 0.1406 

Annualized Sharpe 

(𝑹𝒇 = 𝟎%) 

1.8402 1.8422 0.8255 0.4130 

Maximum drawdown 

(MDD) 

0.2087 0.2060 0.4452 0.4686 

 

Table 3: A summary of Capital Asset Pricing Model 

 MinVP to 

Adj. KLSE 

MeanVP to 

Adj. KLSE 

EWP to 

Adj. KLSE 

Beta 0.7391 0.7290 0.8064 

Annualized Alpha 0.1126 0.1143 0.0897 

Tracking Error 0.0996 0.1002 0.1150 

Active Premium 0.0750 0.0749 0.0782 

Information Ratio 0.7526 0.7477 0.6795 

Treynor Ratio 0.3076 0.3113 0.1588 

relative to the benchmark is 11.43% which is 

the highest among the other strategies. 

Generally, higher alpha means that the portfolio 

is tracking better than the benchmark index. 

Since low tracking error means low volatility, 

min variance portfolio has the lowest volatility 

while equally-weighted portfolio has the 

highest volatility. The min variance portfolio in 

relation to Adjusted KLSE has the lowest 

tracking error with highest information ratio of 

0.7526. Furthermore, the mean variance 

portfolio relative to Adjusted KLSE has the 

highest Treynor ratio, therefore having higher 

rate of return. In order to deliver the portfolio 

with the lowest volatility, the min variance 

portfolio favours value stocks and avoid faster-

growing, longer duration growth stocks with 

high consistency because they exhibit higher 

price volatility. 

 

Conclusion 

 

In this paper, we studied the optimization 

problem for heavy tailed asset using Markowitz 

model. Such model is used to minimize risk 

subjected to a given expected return or on the 

contrary to maximize return subjected to a 

given expected risk. In portfolio theory, it is 

very important for investors to choose the type 

of assets to invest and also the risk factors. The 

model can be solved using Lagrange 

multipliers. We used CAPM as a tool to 

evaluate the performance of Markowitz model 

and estimate the expected return of the 

portfolio. The analysis has been focused on the 

investment strategies relative to a benchmark 

with a yearly basis rebalancing.  

 

We found that the min variance portfolio, 

mean variance portfolio and equally-weighted 

portfolio strategies have taken turns in 

outperforming one another. In backtesting, the 

strategy that generated the highest annualized 

return has the highest annualized standard 

deviation and vice versa. It is concluded that 

CAPM is reasonable to be the indicator of stock 

prices in Malaysia from 2007 to 2012. The min 

variance portfolio has generated greater risk 

adjusted returns than the benchmark in CAPM 

model. The strategy exhibits lower volatility, 
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has generated returns persistently and 

demonstrated positive alphas throughout the 

research window. In summary, Markowitz 

model is found to be useful in portfolio 

optimization for heavy tailed asset. The finding 

is parallel with the study done by Mainik et al. 

(2015). Moreover, investors could use CAPM 

to estimate the behaviour of the stocks in 

Malaysia in minimizing the downside risk and 

invest rationally in stock market. Furthermore, 

it is suggested to diversify a portfolio to reduce 

the unsystematic risk and to increase the 

confidence of investors towards investment 

decision. However, further study might apply 

the same method in a wider dataset in order to 

check for possible biases. A deeper 

investigation of the Markowitz model for 

heavy-tailed assets is needed since there are 

issues on market efficiency and the relevant of 

normality assumption for returns distribution in 

the classical Markowitz. 
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