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Introduction
In general, marine diesel engines are almost 
identical to regular diesel engines, but they are 
generally bulky, larger and produce higher thermal 
efficiency (Ashraful et al., 2014; Shukri et al., 
2015)rising population, expanding urbanization, 
and economic growth in the world. To fulfill this 
energy demand, a large amount of fuel is widely 
used from different fossil resources. Burning 
of fossil fuels has caused serious detrimental 
environmental consequences. The application 
of biodiesel has shown a positive impact in 
resolving these issues. Edible vegetable oils 
are one of the potential feedstocks for biodiesel 
production. However, as the use of edible oils 
will jeopardize food supplies and biodiversity, 
non-edible vegetable oils, also known as 
second-generation feedstocks, are considered 
potential substitutes of edible food crops for 
biodiesel production. This paper introduces 
some species of non-edible vegetables whose 
oils are potential sources of biodiesel. These 
species are Pongamia pinnata karanja. The 
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Abstract: The prediction and control of marine diesel engine performance and emission rates is not 
an easy task in real time. Comprehensive engine performance testing for entire operating conditions 
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networks in predicting the performance parameters of marine diesel engines such as torque, power, 
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results have been validated by comparing the output values of the model with the experimental 
data. The results show that the prediction model using neural network gives good agreement to the 
experimental results which yield higher correlation coefficient of 0.98194 and lower mean square 
error of 0.0026809. This study proves that a trained neural network model is capable to determine the 
performance of marine diesel engines in the accepted range.
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main source of energy to propel ships is the 
marine diesel engine, however its emissions is 
noted as one of the main sources of pollution 
in the marine environment (Borkowski, 2007; 
Fan et al., 2009). The most crucial seaborne 
emissions such as carbon monoxide, nitrogen 
oxides, particulate matter and sulphur oxides are 
formed as a result of marine fuel combustion. 
Approximately about 15%, 13%, and 2.6% of 
the global emissions of NOX, SOX, and CO2, 
respectively are released from ships (Third IMO 
GHG study, 2014). In order to address this issue, 
rigorous emission limits have been imposed 
by various maritime organizations. The most 
recent Marine Pollution Act (MARPOL) states 
that the total sulphur emissions limit has been 
reduced from 3.50% to 0.50% which came into 
effect in January 2020. As a result, biodiesel 
which is derived from vegetable oil has gained 
attention as a potential alternative source for 
petroleum diesel fuel. Its primary advantages 
are renewable and biodegradable (Demirbas, 
2009). Biodiesel is derived from the monoalkyl 
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ester of vegetable oil. It can be processed from 
various plant sources such as soybean oil, palm, 
corn, sunflower and so on (How et al., 2014). 
To meet the strict ship discharge rules, intensive 
studies on diesel engines should be conducted. 
However, testing a marine diesel engine for 
overall operating conditions and fuel cases is 
costly and time consuming. Optionally, the 
ANN forecast model will be used to predict 
performance on marine diesel engines.

The ANN method is a computerized 
system that mimics the way of human brains 
function. Human brains are a huge network 
system that contains approximately 100 billion 
interconnected neurons (Von Bartheld et al., 
2016). The ANN model contains interconnected 
nodes called artificial neurons that serve to 
transmit signals similar to the actual neuronal 
tasks in the human brain as shown in Figure 1 
(Abraham, 2005).

Figure 1: Neural network neuron

The ability of the ANN model is generated 
from training on actual data from experiments 
before making predictions for specific purposes. 
The predictive rate of a trained ANN model 
is much faster than a mathematical model 
simulation because it does not require differential 
equations but the selection of the appropriate 
number of neurons is essential for the accuracy 
of the prediction. The use of ANN methods in 
determining the performance of machines has 
been widely reported by researchers lately. The 
performance prediction of jatropha biodiesel 
in a Yanmar single-cylinder diesel engine was 
performed using ANN model (Dharma et al., 
2017). The model gave excellent prediction 
result with higher R-values of 0.991–0.997 
and lower error values between 0.4–1.2%. 
The authors claimed that the ANN modelling 
was useful in biodiesel research as it has good 
generalisation capability and reliable to predict 
the engine performance.

Application of ANN method was used to 
predict the volumetric efficiency in a diesel 
engine (Luján et al., 2017). In this study, the 
results of engine mapping were used as input 
variables. The model yielded a small error 
prediction of 5.5% and sufficient coefficient of 
determination at 85%. Another application of 
ANN was reported in a study to determine the 
performance and emission characteristics of 
hydrogen dual fuel engine (Syed et al., 2017). 
The model was trained by the trainbfg algorithm 
using eight neurons. The authors claimed that 
the ANN model was precisely predicting the 
experimental data with smaller error of 0.52–
4.35%. In recent work, the ANN technique 
was employed to predict the cyclic variation 
of diesel-butanol blends (Gürgen et al., 2017). 
The authors reveal that the model provides high 
accuracy with the R value of 0.858–0.983 and 
having smaller prediction error. Other ANN 
applications in the diesel engines studies were 
also reviewed (Bahri et al., 2017; Ganesan et al., 
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2015; Ghanbari et al., 2017; Mohd Noor et al., 
2016; Shukri et al., 2015)

From the literature, the application of ANN 
to marine diesel engines is still lacking and 
limited; therefore, this work is carried out to 
develop a predictive model on the performance 
of marine diesel engine using ANN method. This 
research consists of two stages, namely engine 
testing in the laboratory and the development of 
a predictive model. The data laboratory engine 

test will be used as input for the prediction 
model.

Materials and Methods
The implementation of the study was carried out 
in two stages, namely the engine experimental 
work and the development of the ANN model. 
The overall steps involved in completing this 
project are shown in Figure 2.

Figure 2: Reserch work procedure

The experiment carried out consists of the 
following work activities:

i. Preparing biodiesel fuels (BDF) from crude 
palm oil (CPO) base as well as their mixture 
with diesel fuel; percentage amount of fuel 
listed in Table 1

ii. Performing the engine test using the 
different types of biodiesel fuels 

iii. Quantifying the engine performance 
parameters such as torque, power, fuel 
consumption, efficiency and exhaust 
temperature  

iv. Measuring the engine gas emissions 
released from the combustion of biodiesel 
such as nitrogen oxide (NOx) and carbon 
monoxide (CO)

Table 1: Percentage amount of fuel blend

Fuel type Diesel fuel (%) Palm Biodiesel fuel (%)
B0 100 0
B10 90 10
B20 80 20
B30 70 30

The laboratory testing experiments were 
conducted on four-stroke, 201 kW, NTA-855 
marine engine as shown in Figure 3. The fuel 
tested was a B10, B20, B30 blend of palm 

biodiesel and Standard diesel (B0) oil palm 
biodiesel. The tests were run under steady-state 
condition with different engine speed and loads. 
The engine exhaust emission was measured 
using KANE gas analyzer as shown in Figure 4.
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Figure 3: Cummins NT-855

Figure 4: KANE gas analyzer

Artificial Neural Network model
The artificial neural network (ANN) prediction 
model was developed according to the flowchart 
as shown in Figure 5. The model has three layers 
which are input, hidden and output layers and 
the architecture of ANN structure is illustrated 
in Figure 6. The input parameters were type 
of fuel, engine load and speed whereas the 
output parameters consist of torque, power, 
thermal efficiency, exhaust temperature, 

specific fuel consumption, nitrogen oxide and 
carbon monoxide. The training algorithm used 
in this study was Levenberg–Marquardt. This 
algorithm operates using the Jacobian matrix and 
gradient vector method and is able to determine 
the minimum local point at an instantaneous 
rate. The Levenberg–Marquardt algorithm was 
proven to produce the fastest convergence value 
compared to other algorithms as reported by 
previous researchers (Kökkülünk et al., 2013; 
Mohd Noor et al., 2018). 
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Figure 5: Prediction model flowchart

 Figure 6: ANN architecture

Approximately 70% dataset were used in 
the training process, 15% in the validation and 
another 15% in the testing of ANN model as 
shown in Figure 7. The total number of datasets 

was1000 which were later divided into 700 for 
training, 150 for validation and another 150 for 
testing of the model.
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Figure 7: Dataset percentage for training, validation and test

The development and the training of 
prediction ANN model were conducted by using 
toolbox function in MATLAB software. Program 
script was added with the desired coding, 
including the number of hidden layers, transfer 

function and algorithm type used. Determining 
the best number of neuronal networks is a 
difficult task in ANN modeling. The final neural 
network configuration was listed in Table 2. 

Table 2: Neural network model configuration

Parameter Configuration
No. of input neuron 3

No. of hidden neuron 22
No. of output neuron 7

Train algorithm Levenberg-Marquardt
Model criteria MSE

Model activation function Tangent Hyperbolic

The process of determining the optimal 
architecture is done by experimenting with 
several numbers of neurons for the hidden layer. 
In this case, the neuron in the hidden layer was 
varied from 2 to 26 by trial and error procedure 
to determine the optimum number of neurons to 
be used. The result of mean square error (MSE) 
values and the correlation coefficients (R) are 
also compared. The number of neurons that 
produced a value of R, closest to 1 and has a low 
MSE value would be selected as the best number 
of neurons in the hidden layer.

Figure 8 shows that the best learning 
capability and the optimum condition occur 
at 22 numbers of neurons. MSE is defined as 
average squared difference between output and 

target and can be calculated using the equation 
(1). Lower value is better and if the value is 0, 
it means there is no error. Figure 9 shows that 
the best validation performance is 0.0029057, 
which occurs at epoch. Figure 10 illustrates the 
regression graph for training, validation and 
testing which measured the average correlation 
between output and target value which is at 
0.98194.

     (1)
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Figure 8: Performance of mean square error and correlation coefficient

Figure 9: Validation of mean squared error of 22 neuron

Figure 10: Regression of 22 neurons

Results and Discussion

The engine performance and emission parameter 
that have been measured in this study consist of 
power, torque, brake thermal efficiency (BTE), 
exhaust gas temperature (EGT), brake specific 
fuel consumption (BSFC), nitrogen oxide (NOx) 
and carbon monoxide (CO).

ANN Model Validation
The comparison of the ANN prediction results 
with the experiment data of marine diesel 
engine performance and emission are presented 
in Figure 11. The plots show a good agreement 
between the model prediction result and 
experiment data. The result clearly shows that 
the ANN prediction and the experimental result 
are close to each other for all output parameters.
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Figure 11: ANN prediction versus experiment for (a) power (b) torque (c) BTE (d) EGT (e) BSFC (f) NOX (g) 
CO
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Correlation coefficient (R) of output parameter
Correlation coefficient is measured on how 
close the correlation between output and target 
is. If the value is close to 1, it means the model 

is accurate. The regression of R value shown in 
Figure 12 were generated by using equation 2.

(2)

Figure 12: Correlation coefficient output parameter between experiment and ANN predict for 
(a) power (b) torque (c) BTE (d) EGT (e) BSFC (f) NOx (g) CO
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The ANN prediction model for the 
performance and emission of marine diesel 
engine provides a good correlation between 
output and target data. The correlation coefficient 
(R value) for power, torque, BTE, EGT, BSFC, 
NOx, and CO was 0.9951, 0.9962, 0.97552, 
0.98649, 0.94427, 0.97444, and 0.94707 
respectively. The R value for BSFC 0.94427 and 
CO 0.94707 shows the lowest R value due to 
slight inconsistency of the input data.

Conclusion
This study was carried out to develop a 
simulation model for prediction of marine diesel 
engine performance by utilizing ANN approach. 
The data from laboratory engine experiment 
were used as the input data. The performance 
and emission test consisting of four types of 
fuel B0, B10, B20 and B30, were run at various 
engine speed and loads. The training model 
with the 22 neurons produces the optimum 
prediction and provides a good agreement to the 
experiment data. The model produces a higher 
correlation coefficient of 0.98447 and it is lower, 
it means square error of 0.0026809. In a nutshell, 
the artificial neural network model is capable 
of being used in nonlinear problems such as 
in predicting the performance of marine diesel 
engines as it can produce accurate output results 
compared to experimental results.
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