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Introduction
Ordinary Differential Equations
A differential equation is an equation which 
contains the function and its derivatives. A 
differential equation is said to be linear if 
it can be written as a linear combination of 
the derivatives. In general, the differential 
equation can be divided into two categories 
which are the ordinary differential equations 
(ODEs) and partial differential equations 
(PDEs).

Ordinary differential equations (ODEs) 
is a function that involves one or higher 
order derivatives with only one independent 
variable. Normally, solving the first order 
linear ODEs is easy by using various type of 
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methods such as the exact method, separation 
of variables, integrating factors, variation 
of parameters, and method of undetermined 
coefficients. In general, nonlinear ODEs are 
hard to be solved analytically because there 
are many functions that we can construct 
using a finite combination of finite number 
of elementary functions. ODEs can be 
grouped into two types which are linear 
and nonlinear differential equations. For the 
first-order linear ODEs, the function f(t,y) 
can be expressed in a linear form

         f(t,y) = a(x)y+b(x),                   (1.1)       

where a(x) and b(x) are arbitrary 
functions of x only. The first-order nonlinear 
ODEs can be simply written as
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                                                       (1.2)

In our daily life, ODEs are used in a 
wide variety of disciplines, from biology, 
physics, chemistry, economics, and 
engineering. Some examples of real-world 
application by using ODEs are such as in 
medicine for modelling cancer growth or 
the spread of a disease, in engineering for 
describing the movement of electricity, in 
physics to describe the motion of waves, 
pendulum or chaotic systems and in 
chemistry for modelling chemical reactions 
and half-life for decaying radioactive 
isotopes.

Runge-Kutta Methods

There are many known methods to solve 
ODE problems. Runge-Kutta methods are 
the most common ODE solvers. Runge-
Kutta methods are the generalization of the 
concept used in Modified Euler’s method. 
Runge-Kutta methods are numerical 
methods that can integrate the ordinary 
differential equation by using multistep trial 
at the midpoint of an interval. Runge-Kutta 
has the advantage of requiring only explicit 
evaluation of the derivatives of f(t,y).The 
step-size can be modified any time. In this 
project, I can use Runge-Kutta methods to 
solve the first-order nonlinear stiff ODEs 
with adaptive step size.

Adaptive Step Size

During the progress, good ODE solvers may 
have some adaptive control that making 
repeated changes in its step size which 
can make the computation more efficient. 
Normally the objective of adaptive step size 
control is to obtain some predetermined 
accuracy in the solution with minimum 
computational effort. Sometimes numerical 
accuracy is not directly demanded in 
the solution itself, but in some related 
conserved quantity that can be monitored. 
Implementation of adaptive step size 

control requires that the stepping algorithm 
signal information about its performance 
and the important condition is an estimation 
of its truncation error.

Methodology
Runge-Kutta Methods For Stiff ODEs
In this section, we will use Runge-Kutta 
methods to solve the 1st_ order nonlinear 
stiff ordinary differential equation (ODE). 
Runge-Kutta methods have been chosen 
in this project is because this method is 
a multistage method which has better 
stability even though they are categorized 
as a fully explicit method. RK method does 
not require initialization and it is efficient 
since high order RK methods are already 
available. Hence, we will introduce the 
general formula of 2nd_, 4th_ and 5th_ order 
Runge-Kutta methods to handle stiff 
ordinary differential equations (ODEs).

The general equation of Runge-Kutta 
method can be expressed below:

					        

is called an -stage RK method.

where

where the Butcher tableau with coefficients 
are written as

(2.1)
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A general explicit Euler method is given by

                                                              (2.6)

with Butcher tableau

0 0

1 ,

while the implicit Euler method is given by

                                                               (2.7)

with its Butcher tableau

1 1

1 .

Test Problem and Manufactured Solution
Test Problem of 1st-Order Nonlinear Stiff 
ODE
In this section, we provide a 1st- order 
nonlinear stiff ODE with an exact 
solution. By using this test problem is to 
demonstrate the numerical illustration and 
we will use the exact solution to validate 
the programming code. The test case for 
1st-order order nonlinear ODEs has the 
following condition:

      yˈ = -15y, y = 1 whem t = 0,           (2.8)

where the exact solution is given

                         y(t) = e -15t                                  (2.9)

Manufacture a 1st_Order Nonlinear Stiff 
ODE
In this section, we will discuss about the 
manufacturing of an ODE equation. Hence, 
we let a 1st_ order nonlinear stiff ODE to 
have the following expression:

y’ - 4y2 + y + 3t = g(t), with y(0) = y0   (2.10)

where g(t) is a function of t alone.

Furthermore, we assume a stiff solution to 
be

             y(t) = sin (t) e20t,                     (2.11)

where the initial condition y (0) = 0 
(by direct substitution)

Now, we need to find g(t):
yˈ = 20sin(t) e20t,+ cos(t) e20t 
(by product rule)                                 (2.12)

Then by putting y and y̕  in the ODE 
equation (2.10), we have

yˈ-4y2+y+3t = 20sin(t)e20t+cos(t)e20t 

-4sin2 (t)e40t+sin(t)e20t+3t                              (2.13)

Finally, we have manufactured an ODE

yˈ- 4y2+y=20sin(t)e20t+cos(t)e20t

-4sin2(t) e40t+sin(t)e20t                                                                    (2.14)

where y(0) = 0 with an exact solution  y(t) 
= sin(t)e20t.  

The Existence and Uniqueness of 
nonlinear ODEs
Before we solve the 1st-order nonlinear 
ODE, we need to find their existence and 
uniqueness by using the concept of Lipchitz 
continuity. The stiffness on ODEs can be 
regarded as a nonlinear ODE problem with 
a large Lipschitz constant. The theorem 
of the existence and uniqueness states 
that if f is uniformly Lipschitz continuous 
over some time period which is 0 ≤ t ≤ T, 
then the unique solution will be obtained 
through any value α from initial value α. 
For the explicit methods, it is important to 
take a reasonably small step size to obtain 
accurate numerical results.

The theory for the existence of a 
solution to the initial value problem (IVP) 
of the 1st-order ODE is in the form:

          yˈ(t) = f(t,y)            y(0) = α                 (2.15)
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The function (yˈ) is said to be Lipschitz 
continuous in y over some range of t and 
y, such that there exists some constant L>0  
such that

| f(t,y) - f(t,y*)|≤ L| y-yˈ|              (2.16)

for all y and yˈ in this range. Lipschitz 
continuity slightly stronger than continuity 
which requires that |f(t,y)-f(t,y*)|→0 as 
y→y* whereas Lipschitz continuity only 
requires:

| f(t,y) - f(t,y*)|≤ 0as y→y*          (2.17)

For example: Using Taylor expansion, we 
have

                                                     (2.18)

or
                                                    
				       (2.19)

by Mean Value Theorem.

Taking bound on the both side

                                                     (2.20)

                                                            (2.21)

				       (2.22)

Therefore, we had proved that the Lipschitz 
constant,  L=| fy(t,y*)|.

Zero stability of Runge-Kutta methods
Linear Multistep Method (LMM) is known 
to be zero stable and we will proof in this 
section. Usually, a method is said to have 
a special type of numerical stability if the 
global errors can be bounded in term of sum 
of all the one-step error and has the same 
asymptotic behaviour as the local truncation 
error approaches 0. In the ODE theory, it is 

called as the zero-stability, a notion used to 
differentiate this from other type of stability 
that produces the same significance. 

LeVeque (2004) mentioned that an 
r-step linear multistep method (LMM) is 
said to be zero-stable if the roots of the 
polynomial P(θ) satisfy the following 
conditions:

  |θj|≤ 1 for j = 1,2,3,...  

  If θj is a repeated root, then |θj|1 .

In this section, we can conclude that RK-2, 
RK-4 and RK-5 are all zero-stable methods.

Absolute stability
Basically, the local approximations for 
many problems can be nullified in the long 
term are due to the unstable behaviour. 
A way to exploring what is needed for a 
method to solve these problems in stable 
manner is to check the condition of simple 
linear equation yˈ λy = to be solved over a 
single time step. λ is the constant that can 
be a complex number, however we just 
focus our attention on this quantity scaled in 
terms of the step size, which is the complex 
number z = hλ.

We defined the stability function as 
the rational function R(z) = 1 + zbT (I-zA)-

1e, where e∈R has every component equal 
to 1 for a given a Runge-Kutta method. 
The stability region is a set on the complex 
plane such that |R(z)|≤1. When solving the 
problem yˈ=λy, we have to choose step size, 
h small enough to ensure that z=hλ is in the 
stability region, and otherwise the sequence 
of approximations produced in many steps 
will be unbounded. Then we will interpret 
it as an unstable behaviour. The stability 
region for explicit method with s=p≤6 is 
shown in figure below.
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Analysis of Error of the Test Problem

Figure 3.1: Numerical error versus step size h for test problem

Figure 3.1: Stability domain for explicit runge-kutta methods

In the case of a stiff problem, even 
though it may not have a linear form but 
there will be growth factors corresponding 
to values of z which may lie anywhere in 
the left half-plane. In this particular case, 
we are also interested to have methods 
which are “A-stable”, in which all complex 
numbers with negative real part lie in the 
stability region.

Results and Discussion
Analysis of Error
In this section, we will analyze the error 
between three different orders of Runge-
Kutta methods and exact solution for 
manufactured solution.
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Analysis of Error of the Manufactured Solution

Figure 3.2: Numerical error versus step size h for manufactured solution

In Figure 3.1, the graph was plotted 
using the logarithm value of base 10 for the 
numerical error versus the similar logarithm 
value of base 10 for step size h.  The graph 
consists of three different methods used 
which is 2nd-, 4th-, and 5th-order of Runge-
Kutta methods. The red line represents 2nd-
order of Runge-Kutta method, the blue line 
represents 4th-order of Runge-Kutta method 
and the green line represents 5th-order of 
Runge-Kutta method. From Figure 3.1, we 
analyze the global error of the numerical 
approximations with Runge-Kutta methods 
along t[a,b]. By observing the graph, we 
can clearly see that all the numerical error 

for the manufactured solution is getting 
smaller as the step size h decreases. When 
we set up our h = 0.0125, the 2nd-, 4th-
, and 5th-order of Runge-Kutta methods 
produce the numerical error of 6.47x10-

4, 1.51x10-6, 3.06x10-8, respectively. At h 
= 0.0015625, the numerical error for 2nd-, 
4th-, and 5th-order of Runge-Kutta methods 
which are 1.13x10-5, 3.213x10-10, 8.18x10-

13, respectively. From these results, we can 
conclude that 5th-order of Runge-Kutta 
methods produce smallest numerical error 
with same value of step size compared to the 
2nd- and 4th-order of Runge-Kutta methods. 

In Figure 3.2, the graph was plotted 
using the logarithm value of base 10 for the 
numerical error versus the similar logarithm 
value of base 10 for step size h.  The graph 
consists of three different methods used 
which is 2nd-, 4th-, and 5th-order of Runge-
Kutta methods. The red line stands for 2nd-
order of Runge-Kutta method, the blue line 
stands for 4th-order of Runge-Kutta method 
and the green line stands for 5th-order of 
Runge-Kutta method. From Figure 3.2, we 

analyze the global error of the numerical 
approximations with Runge-Kutta methods 
along t[a,b]. By observing the graph, we 
can clearly see that all the numerical error 
for the manufactured solution is getting 
smaller as the step size h decreases. When 
we set up our, h = 0.0125, the 2nd-, 4th, and 
5th-order of Runge-Kutta methods produce 
the numerical error of 3.27x10-4, 5.54x10-

7,5.65x10-9, respectively. At h=0.025, the 
numerical error is 1.30x10-3, 8.84x10-6 
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and 2.14x10-7 for 2nd-, 4th-, and 5th-order of 
Runge-Kutta methods, respectively. From 
these results, we can conclude that 5th-order 
of Runge-Kutta methods produces smallest 
numerical error with same value of step size 
compared to the 2nd- and 4th-order of Runge-
Kutta methods. 

Efficiency Analysis 
In this section, we are going to analyze the 
efficiency of 2nd-, 4th- and 5th-order Runge-
Kutta methods using the plot of numerical 
error versus the CPU time. We obtained 
the CPU time by recording the total time of 
calculation in second starting from (n =1) 
until the end of stopping algorithm (n =N).

Efficiency Analysis of Test Problem

Figure 3.3: Numerical error versus CPU Time for test problem

In Figure 3.3, the graph was plotted 
using the logarithm value of base 10 
for numerical error versus the (central 
processor unit) CPU time required to 
complete the computation in seconds 
(s). The graph consists of three different 
methods used which is 2nd-, 4th-, and 5th-
order of Runge-Kutta methods. The red line 
is for 2nd-order of Runge-Kutta method, the 
blue line is for 4th-order of Runge-Kutta 
method and the green line is for 5th-order 
of Runge-Kutta method. From the graph 
above, we clearly can see that the CPU 
time for each method increase in nonlinear 

pattern when the numerical error is getting 
decreases. CPU time is recorded before 
(n=1) and after (n=N) the loop of time-
stepping algorithm. Based on the efficiency 
result, at step size h=0.05, the required CPU 
time for 2nd-, 4th-, and 5th-order of Runge-
Kutta methods are 1.28x10-3s,4.27x10-3s, 
and 6.17x10-3s, respectively. At h=0.0125, 
the required CPU time for 2nd-, 4th-, and 5th-
order of Runge-Kutta methods are 7.53x10-

3s, 9.82x10-3s, and 2.28x10-2s, respectively. 
As a conclusion, the CPU time increases 
when the step size h decreases for all three 
Runge-Kutta methods.
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Efficiency Analysis of Manufactured Solution

Figure 3.4: Numerical error versus CPU Time for manufactured solution

In Figure 3.4, the graph was plotted 
using the logarithm value of base 10 for 
numerical error versus the (central processor 
unit) CPU time required to complete the 
computation in seconds (s). The graph 
consists of three different methods used 
which is 2nd-, 4th-, and 5th-order of Runge-
Kutta methods. The red line stands for 2nd-
order of Runge-Kutta method, the blue line 
stands for 4th-order of Runge-Kutta method 
and the green line stands for 5th-order of 
Runge-Kutta method. From the graph 
above, we can clearly see that the CPU time 
for each method increases in a nonlinear 
fashion when the numerical error decreases. 
CPU time is recorded before(n=1) and after 
(n=N) within the loop of time-stepping 
algorithm. Based on the efficiency results, 
at step size h=0.05, the required CPU time 
for 2nd-, 4th-, and 5th-order of Runge-Kutta 
methods are 4.41x10-3s, 7.08x10-3s, and, 
1.04x10-2s respectively. As we setting h 
= 0.0015625, the CPU time for 2nd-, 4th-, 
and 5th-order of Runge-Kutta methods are 

7.43x10-2s, 1.06x10-1s, and 1.631x10-1s , 
respectively. As a conclusion, the CPU time 
is increasing when the step size h is getting 
smaller for all three Runge-Kutta methods.

Convergence Analysis
The setting of the step sizes is also important 
to verify the order of the convergence for the 
numerical solution. We consider the y the 
exact value and we denote y the numerical 
approximation where it depends the step 
size h. From here, we can compute the order 
of convergence k of any numerical methods 
for ODE is mathematically expressed as:

                                                             (3.31)

where k is the order of convergence, y is 
the exact solution and yh is the numerical 
approximation which depends on the step 
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size h,                    is the norm of relative error 

which depends on the value of h, the step 
size and    the half of,     the chosen step size.

h
2

Comparison On Efficency Error Between 
Fixed and Adaptive Step Size 
In this section, we will compare the 
efficiency error between the fixed and 
adaptive step size of 5th-order Runge-Kutta 
method for test problem and manufactured 
solution.

Efficiency Error Between Fixed and Adaptive Step Size for Test Problem

Figure 3.6: Efficiency error between the fixed and adaptive step size of 5th-order of Runge-Kutta 
method. (Test Problem)

In Figure 3.6, the graph was plotted 
using the logarithm value of base 10 
for numerical error versus the (central 
processor unit) CPU time required to 
complete the computation in seconds (s). 
The graph consists of two different methods 
used which is 5th-order of Runge-Kutta 
method with adaptive step size and 5th-order 
of Runge-Kutta method with fixed step size. 
The red line is for 5th-order of Runge-Kutta 
method with adaptive step size, and the 
blue line is for 5th-order of Runge-Kutta 
method with fixed step size. From the graph 
above, we clearly can see that the CPU time 
for the 5th-order of Runge-Kutta method 

with adaptive step size is more efficient 
than 5th-order of Runge-Kutta method 
with fixed step size. We also clearly see 
that the numerical error for adaptive step 
size of 5th-order of Runge-Kutta method is 
smaller than the fixed step size. Based on 
the result, at CPU time s=0.0086773, the 
computed error for fixed and adaptive step 
size of 5th-order of Runge-Kutta methods 
are 3.68x10-2, and 8.66x10-5, respectively. 
As a conclusion, the adaptive step size will 
result in more efficient and produce smaller 
numerical error than fixed step size for 5th-
order Runge-Kutta method. 
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Efficiency Error Between Fixed and Adaptive Step Size for Manufactured Solution

Figure 3.7: Efficiency error between the fixed and adaptive step size of 5th-order of Runge-Kutta 
method. (Manufactured solution)

In Figure 3.7, the graph was plotted using 
the logarithm value of base 10 for numerical 
error versus the (central processor unit) CPU 
time required to complete the computation 
in seconds (s). The graph consists of two 
different methods used which is 5th-order 
of Runge-Kutta method with adaptive step 
size and 5th-order of Runge-Kutta method 
with fixed step size. The red line is for 5th-
order of Runge-Kutta method with adaptive 
step size, and the blue line is for 5th-order 
of Runge-Kutta method with fixed step 
size. From the graph above, we clearly can 
see that the CPU time for the 5th-order of 
Runge-Kutta method with adaptive step 
size is more efficient than 5th-order of 
Runge-Kutta method with fixed step size. 
We can observe that the numerical error for 
adaptive step size of 5th-order of Runge-
Kutta method is smaller than the fixed 
step size. Based on the result, at CPU time 
s=0.11613, the computed error for fixed and 
adaptive step size of 5th-order of Runge-
Kutta methods are 9.60x10-6, and 2.79x10-7, 
respectively. As a conclusion, the adaptive 
step size will result in more efficient and 
produces smaller numerical error than fixed 
step size for 5th-order Runge-Kutta method. 

Conclusion
In this research, the purpose is to study 
the RK methods when solving 1st-order 
nonlinear stiff ODEs. We have used two 
test cases which are the test problem and 
manufactured solution to determine the 
accuracy and efficiency of the numerical 
method. We provided the general formula 
of 2nd-, 4th-, and 5th-order RK methods 
with the Butcher tableau. Then, we 
proposed a test problem and constructed 
the manufactured solution with certain 
assumptions for the purpose of numerical 
illustration. Before that, we verified the 
existence and uniqueness of the test case by 
using Lipschitz continuity. 

By using RK methods, the numerical 
schemes of 2nd-, 4th-, and 5th-order are 
constructed for both two test cases. 
Then, we verified the RK methods in 
term of numerical error and the order 
of convergence for all accuracy by 
implementing the algorithm using Octave 
programming language. We also compared 
the efficiency of the RK methods in term of 
the plot of numerical error versus the CPU 
time for both two test cases. Then, we also 
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compared the fixed and adaptive step size 
for 5th-order RK method in term of the plot 
on efficiency error versus CPU time graph 
for both two test cases.

Based on the obtained results, we 
can conclude that 5th-order Runge-Kutta 
method is the most efficient for solving the 
first-order nonlinear stiff ODEs problem. 
We also can conclude that the adaptive step 
size is more efficient and produce smaller 
computed error than the fixed step size of 
5th-order Runge-Kutta method.
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