
Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

eISSN: 2637-1138
© Penerbit UMT

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021:25-36

Introduction
Ordinary Differential Equations
A differential equation is an equation which
contains the function and its derivatives. A
differential equation is said to be linear if
it can be written as a linear combination of
the derivatives. In general, the differential
equation can be divided into two categories
which are the ordinary differential equations
(ODEs) and partial differential equations
(PDEs).

Ordinary differential equations (ODEs)
is a function that involves one or higher
order derivatives with only one independent
variable. Normally, solving the first order
linear ODEs is easy by using various type of

ADAPTIVE TIME-STEPPING FOR RUNGE-KUTTA METHODS FOR
ORDINARY DIFFERENTIAL EQUATIONS

CHUA KAH WAI, LOY KAK CHOON* AND RUWAIDIAH IDRIS

Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu, Malaysia.

*Corresponding author: kakchoon@umt.edu.my

Abstract: Ordinary Differential Equations (ODEs) are usually used in numerous fields
especially in solving the modelling problem. Numerical methods are one of the vital
mathematical tools to solve the ODEs that appear in various modelling problems by
determining the approximation solution close to the in exact solution if it exists. Runge-
Kutta methods (RK) are the numerical methods used to integrate the ODEs by applying
multistage methods at the midpoint of an interval which can efficiently produce a more
accurate result or small magnitude of error. We proposed Runge-Kutta methods (RK)
to solve the 1st_ order nonlinear stiff ODEs. The RK methods used in this research are
known as the RK-2, RK-4, and RK-5 methods. We proved the existence and uniqueness
of the ODEs before we solved it numerically. We also proved the absolute-stability of the
RK methods to determine the overall stability of these methods. We found two suitable
test cases which are the standard test problem and manufactured solution. We proved
that by combining the adaptive step size with RK methods can result in more efficient
computation. We implemented the 2nd_, 4th_ and 5th_ order of RK methods with step size
adaptively algorithm to solve the test problem and manufactured solution via Octave
programming language. The resulting numerical error and the stability of each method can
be studied. We compared our results using several error plots versus the Central Processing
Unit (CPU) time required to compute a given nonlinear 1st_ order stiff ODE problem. In
a conclusion, RK methods which combine with the adaptive step size can result in more
efficient computation and accuracy compare with the fixed step size RK methods.

Keywords: Ordinary Differential Equation; Runge-Kutta; Multistage method; Adaptive
step size; non-linear stiff equation.

methods such as the exact method, separation
of variables, integrating factors, variation
of parameters, and method of undetermined
coefficients. In general, nonlinear ODEs are
hard to be solved analytically because there
are many functions that we can construct
using a finite combination of finite number
of elementary functions. ODEs can be
grouped into two types which are linear
and nonlinear differential equations. For the
first-order linear ODEs, the function f(t,y)
can be expressed in a linear form

 f(t,y) = a(x)y+b(x), (1.1)

where a(x) and b(x) are arbitrary
functions of x only. The first-order nonlinear
ODEs can be simply written as

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

Chua Kah Wai et.al 26

 (1.2)

In our daily life, ODEs are used in a
wide variety of disciplines, from biology,
physics, chemistry, economics, and
engineering. Some examples of real-world
application by using ODEs are such as in
medicine for modelling cancer growth or
the spread of a disease, in engineering for
describing the movement of electricity, in
physics to describe the motion of waves,
pendulum or chaotic systems and in
chemistry for modelling chemical reactions
and half-life for decaying radioactive
isotopes.

Runge-Kutta Methods

There are many known methods to solve
ODE problems. Runge-Kutta methods are
the most common ODE solvers. Runge-
Kutta methods are the generalization of the
concept used in Modified Euler’s method.
Runge-Kutta methods are numerical
methods that can integrate the ordinary
differential equation by using multistep trial
at the midpoint of an interval. Runge-Kutta
has the advantage of requiring only explicit
evaluation of the derivatives of f(t,y).The
step-size can be modified any time. In this
project, I can use Runge-Kutta methods to
solve the first-order nonlinear stiff ODEs
with adaptive step size.

Adaptive Step Size

During the progress, good ODE solvers may
have some adaptive control that making
repeated changes in its step size which
can make the computation more efficient.
Normally the objective of adaptive step size
control is to obtain some predetermined
accuracy in the solution with minimum
computational effort. Sometimes numerical
accuracy is not directly demanded in
the solution itself, but in some related
conserved quantity that can be monitored.
Implementation of adaptive step size

control requires that the stepping algorithm
signal information about its performance
and the important condition is an estimation
of its truncation error.

Methodology
Runge-Kutta Methods For Stiff ODEs
In this section, we will use Runge-Kutta
methods to solve the 1st_ order nonlinear
stiff ordinary differential equation (ODE).
Runge-Kutta methods have been chosen
in this project is because this method is
a multistage method which has better
stability even though they are categorized
as a fully explicit method. RK method does
not require initialization and it is efficient
since high order RK methods are already
available. Hence, we will introduce the
general formula of 2nd_, 4th_ and 5th_ order
Runge-Kutta methods to handle stiff
ordinary differential equations (ODEs).

The general equation of Runge-Kutta
method can be expressed below:

is called an -stage RK method.

where

where the Butcher tableau with coefficients
are written as

(2.1)

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

ADAPTIVE TIME-STEPPING FOR RUNGE-KUTTA METHODS FOR ORDINARY 27
DIFFERENTIAL EQUATIONS

A general explicit Euler method is given by

 (2.6)

with Butcher tableau

0 0

1 ,

while the implicit Euler method is given by

 (2.7)

with its Butcher tableau

1 1

1 .

Test Problem and Manufactured Solution
Test Problem of 1st-Order Nonlinear Stiff
ODE
In this section, we provide a 1st- order
nonlinear stiff ODE with an exact
solution. By using this test problem is to
demonstrate the numerical illustration and
we will use the exact solution to validate
the programming code. The test case for
1st-order order nonlinear ODEs has the
following condition:

 yˈ = -15y, y = 1 whem t = 0, (2.8)

where the exact solution is given

 y(t) = e -15t (2.9)

Manufacture a 1st_Order Nonlinear Stiff
ODE
In this section, we will discuss about the
manufacturing of an ODE equation. Hence,
we let a 1st_ order nonlinear stiff ODE to
have the following expression:

y’ - 4y2 + y + 3t = g(t), with y(0) = y0 (2.10)

where g(t) is a function of t alone.

Furthermore, we assume a stiff solution to
be

 y(t) = sin (t) e20t, (2.11)

where the initial condition y (0) = 0
(by direct substitution)

Now, we need to find g(t):
yˈ = 20sin(t) e20t,+ cos(t) e20t
(by product rule) (2.12)

Then by putting y and y̕ in the ODE
equation (2.10), we have

yˈ-4y2+y+3t = 20sin(t)e20t+cos(t)e20t

-4sin2 (t)e40t+sin(t)e20t+3t (2.13)

Finally, we have manufactured an ODE

yˈ- 4y2+y=20sin(t)e20t+cos(t)e20t

-4sin2(t) e40t+sin(t)e20t (2.14)

where y(0) = 0 with an exact solution y(t)
= sin(t)e20t.

The Existence and Uniqueness of
nonlinear ODEs
Before we solve the 1st-order nonlinear
ODE, we need to find their existence and
uniqueness by using the concept of Lipchitz
continuity. The stiffness on ODEs can be
regarded as a nonlinear ODE problem with
a large Lipschitz constant. The theorem
of the existence and uniqueness states
that if f is uniformly Lipschitz continuous
over some time period which is 0 ≤ t ≤ T,
then the unique solution will be obtained
through any value α from initial value α.
For the explicit methods, it is important to
take a reasonably small step size to obtain
accurate numerical results.

The theory for the existence of a
solution to the initial value problem (IVP)
of the 1st-order ODE is in the form:

 yˈ(t) = f(t,y) y(0) = α (2.15)

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

Chua Kah Wai et.al 28

The function (yˈ) is said to be Lipschitz
continuous in y over some range of t and
y, such that there exists some constant L>0
such that

| f(t,y) - f(t,y*)|≤ L| y-yˈ| (2.16)

for all y and yˈ in this range. Lipschitz
continuity slightly stronger than continuity
which requires that |f(t,y)-f(t,y*)|→0 as
y→y* whereas Lipschitz continuity only
requires:

| f(t,y) - f(t,y*)|≤ 0as y→y* (2.17)

For example: Using Taylor expansion, we
have

 (2.18)

or

 (2.19)

by Mean Value Theorem.

Taking bound on the both side

 (2.20)

 (2.21)

 (2.22)

Therefore, we had proved that the Lipschitz
constant, L=| fy(t,y*)|.

Zero stability of Runge-Kutta methods
Linear Multistep Method (LMM) is known
to be zero stable and we will proof in this
section. Usually, a method is said to have
a special type of numerical stability if the
global errors can be bounded in term of sum
of all the one-step error and has the same
asymptotic behaviour as the local truncation
error approaches 0. In the ODE theory, it is

called as the zero-stability, a notion used to
differentiate this from other type of stability
that produces the same significance.

LeVeque (2004) mentioned that an
r-step linear multistep method (LMM) is
said to be zero-stable if the roots of the
polynomial P(θ) satisfy the following
conditions:

 |θj|≤ 1 for j = 1,2,3,...

 If θj is a repeated root, then |θj|1 .

In this section, we can conclude that RK-2,
RK-4 and RK-5 are all zero-stable methods.

Absolute stability
Basically, the local approximations for
many problems can be nullified in the long
term are due to the unstable behaviour.
A way to exploring what is needed for a
method to solve these problems in stable
manner is to check the condition of simple
linear equation yˈ λy = to be solved over a
single time step. λ is the constant that can
be a complex number, however we just
focus our attention on this quantity scaled in
terms of the step size, which is the complex
number z = hλ.

We defined the stability function as
the rational function R(z) = 1 + zbT (I-zA)-

1e, where e∈R has every component equal
to 1 for a given a Runge-Kutta method.
The stability region is a set on the complex
plane such that |R(z)|≤1. When solving the
problem yˈ=λy, we have to choose step size,
h small enough to ensure that z=hλ is in the
stability region, and otherwise the sequence
of approximations produced in many steps
will be unbounded. Then we will interpret
it as an unstable behaviour. The stability
region for explicit method with s=p≤6 is
shown in figure below.

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

ADAPTIVE TIME-STEPPING FOR RUNGE-KUTTA METHODS FOR ORDINARY 29
DIFFERENTIAL EQUATIONS

Analysis of Error of the Test Problem

Figure 3.1: Numerical error versus step size h for test problem

Figure 3.1: Stability domain for explicit runge-kutta methods

In the case of a stiff problem, even
though it may not have a linear form but
there will be growth factors corresponding
to values of z which may lie anywhere in
the left half-plane. In this particular case,
we are also interested to have methods
which are “A-stable”, in which all complex
numbers with negative real part lie in the
stability region.

Results and Discussion
Analysis of Error
In this section, we will analyze the error
between three different orders of Runge-
Kutta methods and exact solution for
manufactured solution.

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

Chua Kah Wai et.al 30

Analysis of Error of the Manufactured Solution

Figure 3.2: Numerical error versus step size h for manufactured solution

In Figure 3.1, the graph was plotted
using the logarithm value of base 10 for the
numerical error versus the similar logarithm
value of base 10 for step size h. The graph
consists of three different methods used
which is 2nd-, 4th-, and 5th-order of Runge-
Kutta methods. The red line represents 2nd-
order of Runge-Kutta method, the blue line
represents 4th-order of Runge-Kutta method
and the green line represents 5th-order of
Runge-Kutta method. From Figure 3.1, we
analyze the global error of the numerical
approximations with Runge-Kutta methods
along t[a,b]. By observing the graph, we
can clearly see that all the numerical error

for the manufactured solution is getting
smaller as the step size h decreases. When
we set up our h = 0.0125, the 2nd-, 4th-
, and 5th-order of Runge-Kutta methods
produce the numerical error of 6.47x10-

4, 1.51x10-6, 3.06x10-8, respectively. At h
= 0.0015625, the numerical error for 2nd-,
4th-, and 5th-order of Runge-Kutta methods
which are 1.13x10-5, 3.213x10-10, 8.18x10-

13, respectively. From these results, we can
conclude that 5th-order of Runge-Kutta
methods produce smallest numerical error
with same value of step size compared to the
2nd- and 4th-order of Runge-Kutta methods.

In Figure 3.2, the graph was plotted
using the logarithm value of base 10 for the
numerical error versus the similar logarithm
value of base 10 for step size h. The graph
consists of three different methods used
which is 2nd-, 4th-, and 5th-order of Runge-
Kutta methods. The red line stands for 2nd-
order of Runge-Kutta method, the blue line
stands for 4th-order of Runge-Kutta method
and the green line stands for 5th-order of
Runge-Kutta method. From Figure 3.2, we

analyze the global error of the numerical
approximations with Runge-Kutta methods
along t[a,b]. By observing the graph, we
can clearly see that all the numerical error
for the manufactured solution is getting
smaller as the step size h decreases. When
we set up our, h = 0.0125, the 2nd-, 4th, and
5th-order of Runge-Kutta methods produce
the numerical error of 3.27x10-4, 5.54x10-

7,5.65x10-9, respectively. At h=0.025, the
numerical error is 1.30x10-3, 8.84x10-6

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

ADAPTIVE TIME-STEPPING FOR RUNGE-KUTTA METHODS FOR ORDINARY 31
DIFFERENTIAL EQUATIONS

and 2.14x10-7 for 2nd-, 4th-, and 5th-order of
Runge-Kutta methods, respectively. From
these results, we can conclude that 5th-order
of Runge-Kutta methods produces smallest
numerical error with same value of step size
compared to the 2nd- and 4th-order of Runge-
Kutta methods.

Efficiency Analysis
In this section, we are going to analyze the
efficiency of 2nd-, 4th- and 5th-order Runge-
Kutta methods using the plot of numerical
error versus the CPU time. We obtained
the CPU time by recording the total time of
calculation in second starting from (n =1)
until the end of stopping algorithm (n =N).

Efficiency Analysis of Test Problem

Figure 3.3: Numerical error versus CPU Time for test problem

In Figure 3.3, the graph was plotted
using the logarithm value of base 10
for numerical error versus the (central
processor unit) CPU time required to
complete the computation in seconds
(s). The graph consists of three different
methods used which is 2nd-, 4th-, and 5th-
order of Runge-Kutta methods. The red line
is for 2nd-order of Runge-Kutta method, the
blue line is for 4th-order of Runge-Kutta
method and the green line is for 5th-order
of Runge-Kutta method. From the graph
above, we clearly can see that the CPU
time for each method increase in nonlinear

pattern when the numerical error is getting
decreases. CPU time is recorded before
(n=1) and after (n=N) the loop of time-
stepping algorithm. Based on the efficiency
result, at step size h=0.05, the required CPU
time for 2nd-, 4th-, and 5th-order of Runge-
Kutta methods are 1.28x10-3s,4.27x10-3s,
and 6.17x10-3s, respectively. At h=0.0125,
the required CPU time for 2nd-, 4th-, and 5th-
order of Runge-Kutta methods are 7.53x10-

3s, 9.82x10-3s, and 2.28x10-2s, respectively.
As a conclusion, the CPU time increases
when the step size h decreases for all three
Runge-Kutta methods.

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

Chua Kah Wai et.al 32

Efficiency Analysis of Manufactured Solution

Figure 3.4: Numerical error versus CPU Time for manufactured solution

In Figure 3.4, the graph was plotted
using the logarithm value of base 10 for
numerical error versus the (central processor
unit) CPU time required to complete the
computation in seconds (s). The graph
consists of three different methods used
which is 2nd-, 4th-, and 5th-order of Runge-
Kutta methods. The red line stands for 2nd-
order of Runge-Kutta method, the blue line
stands for 4th-order of Runge-Kutta method
and the green line stands for 5th-order of
Runge-Kutta method. From the graph
above, we can clearly see that the CPU time
for each method increases in a nonlinear
fashion when the numerical error decreases.
CPU time is recorded before(n=1) and after
(n=N) within the loop of time-stepping
algorithm. Based on the efficiency results,
at step size h=0.05, the required CPU time
for 2nd-, 4th-, and 5th-order of Runge-Kutta
methods are 4.41x10-3s, 7.08x10-3s, and,
1.04x10-2s respectively. As we setting h
= 0.0015625, the CPU time for 2nd-, 4th-,
and 5th-order of Runge-Kutta methods are

7.43x10-2s, 1.06x10-1s, and 1.631x10-1s ,
respectively. As a conclusion, the CPU time
is increasing when the step size h is getting
smaller for all three Runge-Kutta methods.

Convergence Analysis
The setting of the step sizes is also important
to verify the order of the convergence for the
numerical solution. We consider the y the
exact value and we denote y the numerical
approximation where it depends the step
size h. From here, we can compute the order
of convergence k of any numerical methods
for ODE is mathematically expressed as:

 (3.31)

where k is the order of convergence, y is
the exact solution and yh is the numerical
approximation which depends on the step

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

ADAPTIVE TIME-STEPPING FOR RUNGE-KUTTA METHODS FOR ORDINARY 33
DIFFERENTIAL EQUATIONS

size h, is the norm of relative error

which depends on the value of h, the step
size and the half of, the chosen step size.

h
2

Comparison On Efficency Error Between
Fixed and Adaptive Step Size
In this section, we will compare the
efficiency error between the fixed and
adaptive step size of 5th-order Runge-Kutta
method for test problem and manufactured
solution.

Efficiency Error Between Fixed and Adaptive Step Size for Test Problem

Figure 3.6: Efficiency error between the fixed and adaptive step size of 5th-order of Runge-Kutta
method. (Test Problem)

In Figure 3.6, the graph was plotted
using the logarithm value of base 10
for numerical error versus the (central
processor unit) CPU time required to
complete the computation in seconds (s).
The graph consists of two different methods
used which is 5th-order of Runge-Kutta
method with adaptive step size and 5th-order
of Runge-Kutta method with fixed step size.
The red line is for 5th-order of Runge-Kutta
method with adaptive step size, and the
blue line is for 5th-order of Runge-Kutta
method with fixed step size. From the graph
above, we clearly can see that the CPU time
for the 5th-order of Runge-Kutta method

with adaptive step size is more efficient
than 5th-order of Runge-Kutta method
with fixed step size. We also clearly see
that the numerical error for adaptive step
size of 5th-order of Runge-Kutta method is
smaller than the fixed step size. Based on
the result, at CPU time s=0.0086773, the
computed error for fixed and adaptive step
size of 5th-order of Runge-Kutta methods
are 3.68x10-2, and 8.66x10-5, respectively.
As a conclusion, the adaptive step size will
result in more efficient and produce smaller
numerical error than fixed step size for 5th-
order Runge-Kutta method.

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

Chua Kah Wai et.al 34

Efficiency Error Between Fixed and Adaptive Step Size for Manufactured Solution

Figure 3.7: Efficiency error between the fixed and adaptive step size of 5th-order of Runge-Kutta
method. (Manufactured solution)

In Figure 3.7, the graph was plotted using
the logarithm value of base 10 for numerical
error versus the (central processor unit) CPU
time required to complete the computation
in seconds (s). The graph consists of two
different methods used which is 5th-order
of Runge-Kutta method with adaptive step
size and 5th-order of Runge-Kutta method
with fixed step size. The red line is for 5th-
order of Runge-Kutta method with adaptive
step size, and the blue line is for 5th-order
of Runge-Kutta method with fixed step
size. From the graph above, we clearly can
see that the CPU time for the 5th-order of
Runge-Kutta method with adaptive step
size is more efficient than 5th-order of
Runge-Kutta method with fixed step size.
We can observe that the numerical error for
adaptive step size of 5th-order of Runge-
Kutta method is smaller than the fixed
step size. Based on the result, at CPU time
s=0.11613, the computed error for fixed and
adaptive step size of 5th-order of Runge-
Kutta methods are 9.60x10-6, and 2.79x10-7,
respectively. As a conclusion, the adaptive
step size will result in more efficient and
produces smaller numerical error than fixed
step size for 5th-order Runge-Kutta method.

Conclusion
In this research, the purpose is to study
the RK methods when solving 1st-order
nonlinear stiff ODEs. We have used two
test cases which are the test problem and
manufactured solution to determine the
accuracy and efficiency of the numerical
method. We provided the general formula
of 2nd-, 4th-, and 5th-order RK methods
with the Butcher tableau. Then, we
proposed a test problem and constructed
the manufactured solution with certain
assumptions for the purpose of numerical
illustration. Before that, we verified the
existence and uniqueness of the test case by
using Lipschitz continuity.

By using RK methods, the numerical
schemes of 2nd-, 4th-, and 5th-order are
constructed for both two test cases.
Then, we verified the RK methods in
term of numerical error and the order
of convergence for all accuracy by
implementing the algorithm using Octave
programming language. We also compared
the efficiency of the RK methods in term of
the plot of numerical error versus the CPU
time for both two test cases. Then, we also

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

ADAPTIVE TIME-STEPPING FOR RUNGE-KUTTA METHODS FOR ORDINARY 35
DIFFERENTIAL EQUATIONS

compared the fixed and adaptive step size
for 5th-order RK method in term of the plot
on efficiency error versus CPU time graph
for both two test cases.

Based on the obtained results, we
can conclude that 5th-order Runge-Kutta
method is the most efficient for solving the
first-order nonlinear stiff ODEs problem.
We also can conclude that the adaptive step
size is more efficient and produce smaller
computed error than the fixed step size of
5th-order Runge-Kutta method.

Acknowledgements
At the end of my thesis, I would like to thank
all people who made this thesis possible and
conducting this final year project is such an
enjoyable experience.

First and foremost, I wish to express
my appreciation to Dr Loy Kak Choon,
supervisor and Dr Ruwaidiah Binti Idris,
co-supervisor of this thesis for giving me
many useful advices and guidance with
patients. Thank you for inspiring me to
have a better understanding my research
and giving me many useful information,
which helped me to complete this research.
I really appreciate it.

Next, my sincere gratitude goes to
Dr. Mohamed Saifullah Bin Hussin and
Dr. Zabidin Bin Salleh as my coordinators
for Final Year Project. All the information
of writing a formal thesis was given to us
through workshops. These workshops had
helped me to prepare my project in a proper
way.

Most importantly, I would like to
express my deepest gratitude for a constant
support, emotional understanding and love
that I received from my family especially
my mother, Liew Siew Foong. Thank
you for their motivational help, support
and encouragement for the success of
my research. Without their support, this
research cannot be completed with a great
success.

Finally, I would also like to thank my friends
who are under the same supervision with my
both supervisors for their encouragement
and willingness to share their valuable ideas
and knowledge which are very helpful to
me for completing this research.

References
Aliyu, B. K., Osheku C. A.,Funmilayo, A.

A., & Musa, J. I. (2014). Identifying
Stiff Ordinary Differential Equations
and Problem Solving Environmetns
(PSEs). Journal of Scientific Research
& Reports, 3(11), 1420-1448.

Balac, S., & Mahe, F. (2013). Embedded
Runge-Kutta scheme for step-
size control in the interaction
picture method.Computer Physics
Communications, 184(4), 1211-1219.

Butcher, J. C. (1996). A history of Runge-
Kutta methods. Applied Numerical
Mathematics, 20(3), 247-260.

Butcher, J. C. (2005). Numerical Methods
for Ordinary Differential Equations
Second Edition. England: John Wiley
& Sons Ltd.

Butcher, J. C. (2007). Runge-Kutta methods.
Scholarpedia, 2(9), 3147.http://www.
scholarpedia.org/article/Runge-Kutta_
methods [21 October 2011]

LeVeque, R. J. (2004). Finite Difference
Methods for Differential Equation.
Washington: University of Washington.

Oleg G. (2007). Adaptive Stepsize
Numerical Methods for Solving
Ordinary Differential Equations.

Richard, L. B., & Douglas, F. J. (2011).
Numerical Analysis, Ninth Edition.
Error Control and the Runge-Kutta-
Fehlberg Method, pp. 294-302.

Salau, O., & Ajide, O. (2017). Adaptive
Time Steps Runge-Kutta Methods:
Comparative Analysis of Simulation
Time in Nonlinear and Harmonically

Universiti Malaysia Terengganu Journal of Undergraduate Research
Volume 3 Number 1, January 2021: 25-36

Chua Kah Wai et.al 36

Excited Pendulum and Duffing
Oscillators.British Journal of Applied
Science & Technology, 19(5), 1-13.

Serdar I. (2012). A Runge-Kutta Model
Based Adaptive Predictive Controller
for Nonlinear Systems. IFAC
Proceedings Volumes, 45(17), 151-
156.

Stephane B. (2013). High order embedded
Runge-Kutta scheme for adaptive
step-size control in Interaction Picture
method. Journal of the Korean
Society for Industrial and Applied
Mathematics, 17(4), 238-266.

Syed Hyder, A. M, & Arnold Willem,
H. (2013). Adaptive time stepping
algorithm for Lagrangian transport
models: Theory and idealised test
cases, 68, 9-21.

Thohura, S., & Rahman, A. (2010).
Comparison of Numerical Methods
for Solving Initial Value Problems for
Stiff Differential Equations. Journal of
Bangladesh Mathematical Society, 30,
122-132.

Wang Z., Wang Q., & Klinke D.Z. (20160.
Simulation Study on Effects of Order
and Step Size of Runge-Kutta Methods
that Solve Contagious Disease and
Tumor Models. Journal of Computer
Science & System Biology, 9(5), 163-
172.

Wen S. (2015). An Introduction to
Numerical Computation. Penn State
University, USA, pp. 173-216.

Zhao, F., & Utkin, V. (1996). Adaptive
Simulation and control of variable-
structure control systems in sliding
regimes. Automatica, 32(7), 1037-
1042.

