AQUAPONICS: A SUSTAINABLE TECHNOLOGY FOR AQUACULTURE AND AGRICULTURE FOOD SECURITY

Authors

  • Norhidayah Abdul Manan Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
  • Siti Jalilah Mohamad Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
  • Amyra Suryatie Kamaruzzan Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
  • Mohammad Mukmin Ahmad Razman Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
  • Nor Azman Kasan Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu
  • Muhammad Ikhwanuddin Higher Institution Centre of Excellence, Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu

DOI:

https://doi.org/10.46754/ps.2025.01.004

Keywords:

organic food, nitrogen cycle, bacteria, SDG goals, food product, income generations

Abstract

Aquaponics are one of green technologies and that would allow for the production of multiple food products like fish and vegetables in one complete system. Aquaponic systems also have potential as a sustainable food security practice as the production of vegetables and fish can be done simultaneously. The process also supports global Sustainable Development Goals (SDG); SDG 1 (no poverty) and SDG 2 (zero hunger), with the implementation of aquaponic systema by local communities. The aquaponic concept is characterised by the recycling of fish waste into beneficial products and as a source of nutrients and natural fertilisers for plant growth. The synergy between the plants, fish and bacteria in the soil and fish waste benefits all components in the system and promotes a circular economy. This review emphasises the types of aquaponic systems, the fish that are suitable for aquaponic cultivation, the types of vegetables that are suitable for aquaponic cultivation and the benefits of the application of aquaponic systems. Aquaponic systems, help promote a sustainable environment, for the recycling of fish and plant waste into fertilisers that maximise resources use and production yields. In this manner, the system helps the local community improve socioeconomic and income generation as well as supports national and global food security agenda.

References

Babatunde, A., Deborak, R-A., Gan, M., & Simon, T. (2021). Economic viability of a small scale low-cost aquaponic system in South Africa. Journal of Applied Aquaculture, 35(2), 285-304. https://doi.org/10.1080/10454438.2021.1958729

Baganz, G. F. M., Junge, R., Portella, M. C., Goddek, S., Keesman, K. J., Baganz, D., Staaks, G., Lohrberg, F., & Kloas, W. (2022). The aquaponic principle-it is all about coupling. Review Aquaculture, 14(1), 252-264. https://doi.org/10.1111/raq.12596

Bailey, D., Rakocy, J., Cole, M. W., & Shultz, K. A. (1997). Economic analysis of a commercial-scale aquaponic system for the production of tilapia and lettuce. Fourth International Symposium on Tilapia in Aquaculture, 1, 1-12. https://images.indiegogo.com/medias/394863/files/20120818104616-Economic_Analysis_of_a_Commercial-Scale_Aquaponic_System.pdf

Bhakar, V., Kaur, K., & Singh, H. (2021). Analyzing the environmental burden of an aquaponics system using LCA, Procedia CIRP, 98, 223-228. https://doi.org/10.1016/j.procir.2021.01.034

Brewer, A., Alfaro, J. F., & Malheiros, T. F. (2021). Evaluating the capacity of small farmers to adopt aquaponics system: Empirical evidence from Brazil. Renewable Agriculture and Food Systems, 36(4), 375-383. https://doi.org/10.1017/S174217052000040X

Buehler, D., & Junge, R. (2016). Global trends and current status of commercial urban rooftop farming. Sustainability, 8(11), 1108. https://doi.org/10.3390/su8111108

Bulc, T. G., Slak, A. S., Kompare, B., Jarni, K., & Klemencic, A. K. (2012). Innovative aquaponic technologies for water reuse in cyprinid fish farms. Proceedings of the BALWOIS 2012, Ohrid, Republic of Macedonia. https://cgs-labs.si/wpcontent/uploads/2019/08/Innovativetechnologies-for-water-reuse-recyclingin-fish-farms.pdf

Diver, S., & Rinehart, L. (2010). Aquaponics-Integration of hydroponics with aquaculture. ATTRA—National Sustainable Agriculture Information Service, 1-28. https://dgroups.org/file2.axd/3992c0ee-6890-44e4-b7f1-dece7fd11e9a/aquaponic.pdf

Effendi, H., Wahyuningsih, S., & Wardiatno, Y. (2017). The use of Nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. Longifolia) in water recirculation system. Applied Water Science, 7, 3055-3063. https://doi.org/10.1007/s13201-016-0418-z

Endut, A., Jusoh, A., Ali, N., Wan Nik, W. B., & Hassan, A. (2010). A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource Technology, 101(5), 1511-1517. https://doi.org/10.1016/j.biortech.2009.09.040

Endut, A., Lananan, F., Jusoh, A., Wan Cik, W. N., & Ali, N. (2016). Aquaponics recirculation system: A sustainable food source for the future water conserves and Resources. Malaysian Journal of Applied Sciences, 1(1), 1-12. Retrieved from https://journal.unisza.edu.my/myjas/index.php/myjas/article/view/7

Endut, A., Jusoh, A., Ali, N., & Wan Nik, W. B. (2011). Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalination and Water Treatment, 32, 422-430. https://doi.org/10.5004/dwt.2011.2761

Flores-Aguilar, P. S., Sanchez-Velazquez, J.,Aguirre-Becerra, H., Pena-Herrejon, G. A., Zamora-Castro, S. A., & Soto-Zarazua, G. M. (2024). Can aquaponics be utilized to reach zero hunger at a local level? Sustainability, 16(3), 1130, 1-14. https://doi.org/10.3390/su16031130

Goddek, S., Espinal, C., Delaide, B., Jijakli, M. H., Schmautz, Z., Wuertz, S., & Keesman, K. J. (2016). Navigating towards decoupled aquaponic systems: A system dynamics design approach. Water, 8(7), 303-314. https://doi.org/10.3390/w8070303

Goddek, S., Joyce, A., Wuertz, S., Körner, O., Bläser, I., Reuter, M., & Keesman, K. J. (2019). Decoupled aquaponics systems. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (Eds.), Aquaponics food production systems (pp. 201-229). Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-15943-6_8

Hussain, A. S., & Brown, P. B. (2024). A literature of tilapia/lettuce aquaponics-production status, varieties and research gaps. Aquaculture Research, 1, 2542434. 1-16.https://doi.org/10.1155/2024/2642434

Ibrahim, L. A., Shaghaleh, H., El-Kassar, G. M., Abu-Hashim, M., Elsadek, E. A., & Hamoud, Y. A. (2023). Aquaponics: A sustainable path to food sovereignty and enhanced water use efficiency. Water, 15(24), 1-36. https://doi.org/10.3390/w15244310

Joyce, A., Goddek, S., Kotzen, B., & Wuertz, S. (2019). Aquaponics: Closing the cycle on limited water, land and nutrient resources. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (Eds.), Aquaponics Food Production Systems (pp. 19-34). Springer. https://doi.org/10.1007/978-3-030-15943-6_2

Junge, R., Konig, B., Villarroel, M., Komives, T., & Jijakli, M. H. (2017). Strategic points in aquaponics. Water, 9(3), 182-189. https://doi.org/10.3390/w9030182

Kasozi, N., Abraham, B., Kaiser, H., & Wilhelmi, B. (2021). The complex microbiome in aquaponics: Significance of the bacterial ecosystem. Annals of Microbiology 71(1), 1-13. https://doi.org/10.1186/s13213-020-01613-5

Khater, E-S., Bahnasawy, A., Ali, S., Abbas, W., Morsy, O., & Sabahy, A. (2023). Study on the plant and fish production in the aquaponic system as affected by different hydraulic loading rates. Scientific Reports, 13, 1-10. https://doi.org/10.1038/s41598-023-44707-1

Kiu, Q-S. C., Teoh, C-Y., & Ooi, A-L. (2024). Aquaponics vs recirculating aquaculture system: Assessing productivity and water use efficiency of native fish species Empurau (Tor tambroides) and Jelawat (Leptobarbus hoevenii) compared to red hybrid tilapia. Sains Malaysiana, 53(4), 747-757. http://doi.org/10.17576/jsm-2024-5304-02

Kloas, W., Grob, R., Baganz, D., Graupner, J., Monsees, H., Schmidt, U., Staaks, G., Suhl, J., Tschirner, M., & Wittstock, B. (2015). New concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquaculture Environment Interaction, 7(2), 179-192. http://dx.doi.org/10.3354/aei00146

Knaus, U., Pribbernow, M., Xu, L., Appelbaum, S., & Palm, H. W. (2020). Basil (Ocimum basilicum) cultivation in decoupled aquaponics with three hydro-components (Grow pipes, raft, gravel) and African catfish (Clarias gariepinus) production in Northern Germany. Sustainability, 12, 1-16. https://doi.org/10.3390/su12208745

Krastanova, M., Sirakov, I., Ivanova-Kiriova, S., Yarkov, D., & Orozova, P. (2022). Aquaponic system: Biological and technological parameters. Biotechnology & Biotechnological equipment, 36, 305-316. https://doi.org/10.1080/13102818.2022.2074892

Liang, J-Y., & Chien, Y-H. (2013). Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia-water spinach raft aquaponics system. International Biodeterioration & Biodegradation, 85, 693-700. https://doi.org/10.1016/j.ibiod.2013.03.029

Love, D. C., Fry, J. P., Genello, L., Hill, E. S., Frederick, J. A., Li, X., & Semmens, K. (2014). An international survey of aquaponics practitioners. PLoS One, 9(7),1-10. https://doi.org/10.1371/journal.pone.0102662

Mamat, N. Z., Shaari, M. I., & Abdul Wahab, N. A. A. (2016). The production of catfish and vegetables in an aquaponic system. Fisheries and Aquaculture Journal, 7(4), 1-3. https://doi.org/10.4172/2150-3508.1000181

Mchunu, J. N., Lagerwall, G., & Senzanje, A. (2018). Aquaponics in South Africa: Results of a national survey. Aquaculture Reports, 12, 12-19. https://doi.org/10.1016/j.aqrep.2018.08.001

Nair, C. S., Manoharan, R., Nishanth, D., Subramanian, R., Neumann, E., & Jaleel, A. (2024). Recent advancements in aquaponics with special emphasis on its sustainability. Journal of the World Aquaculture Society, 1-39. https://doi.org/10.1111/jwas.1316

Narvois, W. M. O., Cesa, C. K. N., Batayola, F. F., Bolo, K., Verdida, S. M., & Nguyen, Y. Q. (2022). Smart aquaponics system for a small-scale farmer for highly urbanized settler. AIP Conference Proceedings, 2502, 050001. https://doi.org/10.1063/5.0108728

Nuwansi, K., Verma, A., Prakash, C., Tiwari, V. K., Chandrakant, M. H., Shete, A. P., & Prabhath, G. P. W. A. (2015). Effect of water flow rate on polyculture of koi carp (Cyprinus carpio var. Koi) and goldfish (Carassius auratus) with water spinach (Ipomoea aquatica) in recirculating aquaponic system. Aquaculture International, 24(1), 385-393. https://doi.org/10.1007/s10499-015-9932-5

Oladimeji, S. A., Okomoda, V. T., Olufeagba, S. O., Solomon, S. G., Abol-Munafi, A. B., Alabi, K. I., Ikhwanuddin, M., Martins, C. Ok., Umaru, J., & Hassan, A. (2020). Aquaponics production of catfish and pumpkin: Comparision with conventional production system. Food Science & Nutrition, 8(5), 2307-2315. https://doi.org/10.1002/fsn3.1512

Olanrewaju, G. O., Sarpong, D. D., Aremu, A. O., & Ade-Ademilua, E. O. (2022). Aquaponics versus conventional farming: Effects on the growth, nutritional and chemical compositions of Celosia argentea L. Corchorus olitorus L, and Ocimum gratissimum L. BioRxiv, 1-47. https://doi.org/10.1101/2022.10.06.511176

Palm, H. W., Bissa, K., & Knaus, U. (2014). Significant factors affecting the economic sustainability of closed aquaponic systems; Part II: Fish and plant growth. AACL Bioflux, 7(3), 162-175. http://www.bioflux.com.ro/docs/2014.162-175.pdf

Perez-Urrestarazu, L., Lobillo-Eguíbar, J., Fernandez-Canero, R., Victor, M., & Fernandez-Cabanas, V. M. (2019). Suitability and optimization of FAO’s small-scale aquaponics systems for joint production of lettuce (Lactuca sativa) and fish (Carassius auratus). Aquacultural Engineering, 85, 129-137. https://doi.org/10.1016/j.aquaeng.2019.04.001

Rakocy, J., Shultz, R., Bailey, D., & Thoman, E. S. (2004). Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. Acta Horticulturae, 648, 63-69. http://dx.doi.org/10.17660/ActaHortic.2004.648.8

Rakocy, J. E. (2012). Aquaponics–Integrating fish and plant culture. In Tidwell, J. H. (Ed.), Aquaculture production systems (pp. 344-386). John Wiley & Sons, Inc.

Roosta, H. R., & Hamidpour, M. (2011). Effects of foliar application of some macro-and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Scientia Horticulturae, 122(3), 396-402. http://dx.doi.org/10.1016/j.scienta.2011.04.006

Ruiz, A., Scicchitano, D., Palladino, G., Nanetti, E., Candela, M., Furones, D., Sanahuja, I., Carbo, R., Gisbert, E., & Andree, K. B. (2023). Microbiome study of a coupled aquaponic system: Unveiling the independency of bacterial communities and their beneficial influences among different compartments. Scientific Reports, 13, 1-17. https://doi.org/10.1038/s41598-023-47081-0

Saha, S., Monroe, A., & Day, M. R. (2016). Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Annals of Agricultural Sciences, 61(2), 181-186. https://doi.org/10.1016/j.aoas.2016.10.001

Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: Integrated fish and plant farming. In Food and Agriculture Organization of the United Nations (Ed.), FAO fisheries and aquaculture technical paper (pp. 1-262). https://openknowledge.fao.org/server/api/core/bitstreams/2ca21047-390f-42cdbd1d-0c2ebc9c1df2/content

Specht, K., Siebert, R., Hartmann, I., Freisinger, U. B., Sawicka, M., Werner, A., Thomaier, S., Henckel, D., Walk, H., & Dietrich, A. (2014). Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agriculture and Human Values, 31, 33-51. https://doi.org/10.1007/s10460-013-9448-4

Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178(C), 335-344. https://doi.org/10.1016/j.agwat.2016.10.013

Tokuyama, T., Mine, A., Kamiyama, K., Yabe, R., Satoh, K., Matsumoto, H., Takahashi, R., & Itonaga, K. (2004). Nitrosomonas communis strain YNSRA, an ammoniaoxidizing bacterium, isolated from the reed rhizoplane in an aquaponics plant. Journal of Bioscience and Bioengineering, 98(4), 309-312. https://doi.org/10.1016/S1389-1723(04)00288-9

Tyson, R. V., Treadwell, D. D., & Simonne, E. H. (2011). Opportunities and challenges to sustainability in aquaponic systems (reviews). Hort Technology, 21(1), 6-13. https://doi.org/10.21273/HORTTECH.21.1.6

Vermeulen, T., & Kamstra, A. (2013). The need for systems design for robust aquaponic systems in the urban environment. Acta Horticulturae, 1004, 71-77. https://doi.org/10.17660/ActaHortic.2013.1004.6

Wei, Y., Li, W., An, D., Li, D., Jiao, Y., & Wei, Q. (2019). Equipment and intelligent control system in aquaponics: A review. IEEE Access, 7, 1-21. https://doi.org/10.1109/ACCESS.2019.2953491

Yang, T., & Kim, H. (2020). Effects of hydraulic loading rate on spatial and temporal water quality characteristics and crop growth and yield in aquaponic systems. Horticulturae, 6(1) 1-9. https://doi.org/10.3390/horticulturae6010009

Downloads

Published

2025-01-26

How to Cite

Abdul Manan, N., Mohamad, S. J., Kamaruzzan, A. S., Ahmad Razman, M. M., Kasan, N. A., & Ikhwanuddin, M. . (2025). AQUAPONICS: A SUSTAINABLE TECHNOLOGY FOR AQUACULTURE AND AGRICULTURE FOOD SECURITY. Planetary Sustainability, 3(1). https://doi.org/10.46754/ps.2025.01.004