MAPPING CHITOSAN POTENTIALS FOR TREATING ANTIBIOTICS IN AQUACULTURE WASTEWATER

Authors

  • HAMID AMIRI Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia.
  • MASOUD TAHERIYOUN Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran.

Keywords:

Chitosan, Antibiotics, Adsorption, Aquaculture, Nanocomposites

Abstract

The potential of chitosan-based materials for the remediation of antibiotics in aquaculture wastewater is evaluated, emphasizing emerging pollutants and the mechanisms underlying their adsorption processes. The efficiency of chitosan nano-composites and their modifications in adsorbing antibiotics, such as tetracycline, is scrutinized, providing insights into deprotonation, protonation, and the impact of concentration on surface interactions. Chemical modifications enhancing adsorption efficiency and the synergistic removal of antibiotics and metal ions using advanced materials like magnetic core-brush composites and cross-linked electrospun chitosan nanofibers are highlighted. The discourse extends to the challenges and recent advancements in removing a spectrum of antibiotics, including tetracycline, amoxicillin, erythromycin, norfloxacin, chloramphenicol, ciprofloxacin, and sulfanilamide. Various adsorbents, such as chitosan nanocomposites, hydrogels, membranes, fibres and nanofibers, foam and sponges, are examined alongside molecularly imprinted chitosan for selective adsorption. The optimization of adsorption processes with chitosan-metal microspheres, and the pivotal role of pH-dependent mechanisms and chemisorptive processes, are also explored. In summary, chitosan-based materials demonstrate substantial promise for the efficient removal of antibiotics from aquaculture wastewater, with ongoing research dedicated to optimizing adsorption capacities.

References

Abdolmaleki, A. Y., Zilouei, H., Khorasani, S. N., & Zargoosh, K. (2018). Adsorption of tetracycline from water using glutaraldehyde-crosslinked electrospun nanofibers of chitosan/poly (vinyl alcohol). Water Science and Technology, 77(5), 1324-1335.

Adriano, W. S., Veredas, V., Santana, C. C., & Gonçalves, L. R. B. (2005). Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models. Biochemical Engineering Journal, 27(2), 132-137. https://doi.org/https://doi.org/10.1016/j.bej.2005.08.010

Ahamad, T., Naushad, M., Al-Shahrani, T., Al-Hokbany, N., & Alshehri, S. M. (2020). Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. International Journal of Biological Macromolecules, 147, 258-267.

Ahmad, A., Mohd-Setapar, S. H., Chuong, C. S., Khatoon, A., Wani, W. A., Kumar, R., & Rafatullah, M. (2015). Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC advances, 5(39), 30801-30818.

Ahmad, A., Sheikh Abdullah, S. R., Hasan, H. A., Othman, A. R., & Ismail, N. I. (2021). Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. Journal of Environmental Management, 287, 112271. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.112271

Ali, H. M., Roghabadi, F. A., & Ahmadi, V. (2023). Solid-supported photocatalysts for wastewater treatment: Supports contribution in the photocatalysis process. Solar Energy, 255, 99-125.

Ambashta, R. D., & Sillanpää, M. (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1), 38-49. https://doi.org/https://doi.org/10.1016/j.jhazmat.2010.04.105

Andrieux, S., Drenckhan, W., & Stubenrauch, C. (2017). Highly ordered biobased scaffolds: From liquid to solid foams. Polymer, 126, 425-431.

Ang, C. Y., Luo, W., Hansen Jr, E. B., Freemana, J. P., & Thompson Jr, H. C. (1996). Determination of amoxicillin in catfish and salmon tissues by liquid chromatography with precolumn formaldehyde derivatization. Journal of AOAC International, 79(2), 389-396.

Aoki, T. (1997). Resistance plasmids and the risk of transfer. In Furunculosis (pp. 433-440). Elsevier.

Beheshti, H., Irani, M., Hosseini, L., Rahimi, A., & Aliabadi, M. (2016). Removal of Cr (VI) from aqueous solutions using chitosan/MWCNT/Fe3O4 composite nanofibers-batch and column studies. Chemical Engineering Journal, 284, 557-564. https://doi.org/https://doi.org/10.1016/j.cej.2015.08.158

Bigogno, R. G., Dias, M. L., Manhães, M. B. N., & Sanchez Rodriguez, R. J. (2022). Integrated treatment of mining dam wastewater with quaternized chitosan and PAN/HPMC/AgNO 3 nanostructured hydrophylic membranes. Journal of Polymers and the Environment, 1-16.

Bruun, M. S., Schmidt, A. S., Madsen, L., & Dalsgaard, I. (2000). Antimicrobial resistance patterns in Danish isolates of Flavobacterium psychrophilum. Aquaculture, 187(3-4), 201-212.

Cai, W., Zhu, F., Liang, H., Jiang, Y., Tu, W., Cai, Z., Wu, J., & Zhou, J. (2019). Preparation of thiourea-modified magnetic chitosan composite with efficient removal efficiency for Cr(VI). Chemical Engineering Research and Design, 144, 150-158. https://doi.org/https://doi.org/10.1016/j.cherd.2019.01.031

Caroni, A., De Lima, C., Pereira, M., & Fonseca, J. (2009). The kinetics of adsorption of tetracycline on chitosan particles. Journal of Colloid and Interface Science, 340(2), 182-191.

Chang, M.-Y., & Juang, R.-S. (2004). Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science, 278(1), 18-25. https://doi.org/https://doi.org/10.1016/j.jcis.2004.05.029

Chashchin, I., Rubina, M., Arkharova, N., & Pigaleva, M. (2021). Microstructure and Mechanical Strength Properties of Chitosan Sponges Obtained from Polymer Solutions in Carbonic Acid. Polymer Science, Series A, 63, 749-756.

Chatterjee, S., Chatterjee, T., & Woo, S. H. (2010). A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresource Technology, 101(11), 3853-3858. https://doi.org/https://doi.org/10.1016/j.biortech.2009.12.089

Chen, D., & Ray, A. K. (2001). Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science, 56(4), 1561-1570.

Chen, F., Gällstedt, M., Olsson, R., Gedde, U., & Hedenqvist, M. (2015). A novel chitosan/wheat gluten biofoam fabricated by spontaneous mixing and vacuum-drying. RSC Advances, 5(114), 94191-94200.

Chen, H., Yan, J., Hu, S., Sun, S., Zhou, F., Liu, J., Tang, S., Zhou, Q., Ding, H., & Zhang, F. (2022). Janus fibre/sponge composite combined with IOPNs promotes haemostasis and efficient reconstruction in oral guided bone regeneration. Materials & Design, 222, 111083.

Chung, S. S., Zheng, J. S., Burket, S. R., & Brooks, B. W. (2018). Select antibiotics in leachate from closed and active landfills exceed thresholds for antibiotic resistance development. Environment International, 115, 89-96. https://doi.org/https://doi.org/10.1016/j.envint.2018.03.014

Daraei, P., Madaeni, S. S., Salehi, E., Ghaemi, N., Ghari, H. S., Khadivi, M. A., & Rostami, E. (2013). Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: Preparation, characterization and performance in dye removal. Journal of Membrane Science, 436, 97-108. https://doi.org/https://doi.org/10.1016/j.memsci.2013.02.031

Darder, M., Colilla, M., & Ruiz-Hitzky, E. (2003). Biopolymer−Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chemistry of Materials, 15(20), 3774-3780. https://doi.org/10.1021/cm0343047

de Farias, B. S., Vidal, É. M., Ribeiro, N. T., da Silveira Jr, N., da Silva Vaz, B., Kuntzler, S. G., de Morais, M. G., Cadaval Jr, T. R. S. A., & de Almeida Pinto, L. A. (2018). Electrospun chitosan/poly (ethylene oxide) nanofibers applied for the removal of glycerol impurities from biodiesel production by biosorption. Journal of Molecular Liquids, 268, 365-370.

Deng, X., Wang, D., Zhang, D., Sun, M., Zhou, L., Wang, Y., Kong, X., Yuan, C., & Zhou, Q. (2023). Antibacterial quaternary ammonium chitosan/carboxymethyl starch/alginate sponges with enhanced hemostatic property for the prevention of dry socket. Frontiers in Bioengineering and Biotechnology, 10, 1083763.

Drlica, K. (1999). Mechanism of fluoroquinolone action. Current Opinion in Microbiology, 2(5), 504-508. https://doi.org/https://doi.org/10.1016/S1369-5274(99)00008-9

Ekambaram, K., & Doraisamy, M. (2017). Surface modification of PVDF nanofiltration membrane using Carboxymethylchitosan-Zinc oxide bionanocomposite for the removal of inorganic salts and humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 525, 49-63. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.04.071

Ergun, M. E. (2023). Activated carbon and cellulose-reinforced biodegradable chitosan foams. BioResources, 18(1), 1215.

Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of photochemistry and photobiology C: Photochemistry Reviews, 9(1), 1-12.

González-Pabón, M. J., Figueredo, F., Martinez-Casillas, D. C., & Corton, E. (2019). Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices. PLoS One, 14(9), e0222538.

Gu, S., Kang, X., Wang, L., Lichtfouse, E., & Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17(2), 629-654. https://doi.org/10.1007/s10311-018-0813-9

Hamdi, A., Boufi, S., & Bouattour, S. (2015). Phthalocyanine/chitosan-TiO2 photocatalysts: Characterization and photocatalytic activity. Applied Surface Science, 339, 128-136. https://doi.org/https://doi.org/10.1016/j.apsusc.2015.02.102

Han, D., Zhao, H., Gao, L., Qin, Z., Ma, J., Han, Y., & Jiao, T. (2021). Preparation of carboxymethyl chitosan/phytic acid composite hydrogels for rapid dye adsorption in wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, 127355. https://doi.org/https://doi.org/10.1016/j.colsurfa.2021.127355

Huang, B., Liu, Y., Li, B., Liu, S., Zeng, G., Zeng, Z., Wang, X., Ning, Q., Zheng, B., & Yang, C. (2017). Effect of Cu (II) ions on the enhancement of tetracycline adsorption by Fe3O4@ SiO2-Chitosan/graphene oxide nanocomposite. Carbohydrate Polymers, 157, 576-585.

Huang, Y., Lee, X., Macazo, F. C., Grattieri, M., Cai, R., & Minteer, S. D. (2018). Fast and efficient removal of chromium (VI) anionic species by a reusable chitosan-modified multi-walled carbon nanotube composite. Chemical Engineering Journal, 339, 259-267. https://doi.org/https://doi.org/10.1016/j.cej.2018.01.133

Igberase, E., Osifo, P., & Ofomaja, A. (2014). The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: Equilibrium, kinetic and desorption studies. Journal of Environmental Chemical Engineering, 2(1), 362-369. https://doi.org/https://doi.org/10.1016/j.jece.2014.01.008

Jafri, N. F., Salleh, K. M., Ghazali, N. A., Mazlan, N. S. N., Ab Halim, N. H., & Zakaria, S. (2023). Effects of carboxymethyl cellulose fiber formations with chitosan incorporation via coating and mixing processes. International Journal of Biological Macromolecules, 253, 126971.

Jaiswal, M., Chauhan, D., & Sankararamakrishnan, N. (2012). Copper chitosan nanocomposite: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. Environmental Science and Pollution Research, 19(6), 2055-2062. https://doi.org/10.1007/s11356-011-0699-6

Jia, S., Yang, Z., Yang, W., Zhang, T., Zhang, S., Yang, X., Dong, Y., Wu, J., & Wang, Y. (2016). Removal of Cu (II) and tetracycline using an aromatic rings-functionalized chitosan-based flocculant: Enhanced interaction between the flocculant and the antibiotic. Chemical Engineering Journal, 283, 495-503.

Jia, X., Zhang, B., Chen, C., Fu, X., & Huang, Q. (2021). Immobilization of chitosan grafted carboxylic Zr-MOF to porous starch for sulfanilamide adsorption. Carbohydrate Polymers, 253, 117305.

Kang, J., Liu, H., Zheng, Y.-M., Qu, J., & Chen, J. P. (2010). Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan. Journal of Colloid and Interface Science, 344(1), 117-125.

Karim, Z., Mathew, A. P., Grahn, M., Mouzon, J., & Oksman, K. (2014). Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water. Carbohydrate Polymers, 112, 668-676. https://doi.org/https://doi.org/10.1016/j.carbpol.2014.06.048

Kumar, A. S. K., Kalidhasan, S., Rajesh, V., & Rajesh, N. (2012). Application of Cellulose-Clay Composite Biosorbent toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater. Industrial & Engineering Chemistry Research, 51(1), 58-69. https://doi.org/10.1021/ie201349h

Le Cunff, J., Tomašić, V., & Gomzi, Z. (2015). Preparation and photoactivity of the immobilized TiO2/chitosan layer. Chemical Engineering Transactions, 43, 865-870.

Le, H. Q., Sekiguchi, Y., Ardiyanta, D., & Shimoyama, Y. (2018). CO2-activated adsorption: a new approach to dye removal by chitosan hydrogel. ACS Omega, 3(10), 14103-14110.

Leong, K. H., Sim, L. C., Bahnemann, D., Jang, M., Ibrahim, S., & Saravanan, P. (2015). Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. Apl Materials, 3(10).

Li, S., Yang, J., Rashid, S., Shen, C., & Liu, J. (2016). Al-Doped chitosan nonwoven in a novel adsorption reactor with a cylindrical sleeve for dye removal: performance and mechanism of action [10.1039/C6RA21369C]. RSC Advances, 6(112), 110935-110942. https://doi.org/10.1039/C6RA21369C

Li, Y., Xie, L., Qu, G., Zhang, H., Dai, Y., Tan, J., Zhong, J., & Zhang, Y.-F. (2024). Efficient treatment of palladium from wastewater by acrolein cross-linked chitosan hydrogels: Adsorption, kinetics, and mechanisms. International Journal of Biological Macromolecules, 254, 127850. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.127850

Li, Z., & Bowman, R. S. (2001). Retention of inorganic oxyanions by organo-kaolinite. Water Research, 35(16), 3771-3776. https://doi.org/https://doi.org/10.1016/S0043-1354(01)00120-8

Li, Z., Liu, Y., Zou, S., Lu, C., Bai, H., Mu, H., & Duan, J. (2020). Removal and adsorption mechanism of tetracycline and cefotaxime contaminants in water by NiFe2O4-COF-chitosan-terephthalaldehyde nanocomposites film. Chemical Engineering Journal, 382, 123008.

Liu, E., Lin, X., Zhang, D., Xu, W., Shi, J., & Hong, Y. (2021). Ionic imprinted CNTs-chitosan hybrid sponge with 3D network structure for selective and effective adsorption of Gd (III). Separation and Purification Technology, 269, 118792.

Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., Li, Z., & Wang, J. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 8(14), 7533-7549.

Liu, J., Zhou, B., Zhang, H., Ma, J., Mu, B., & Zhang, W. (2019). A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution. Bioresource Technology, 294, 122152.

Liu, X., Steele, J. C., & Meng, X.-Z. (2017). Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 223, 161-169. https://doi.org/https://doi.org/10.1016/j.envpol.2017.01.003

Lu, H., Wang, J., Tian, B., Huang, X., Bi, J., Wang, T., & Hao, H. (2018). Application of N‐Doped MoS2 Nanocrystals for Removal of Azo Dyes in Wastewater. Chemical Engineering & Technology, 41(6), 1180-1187.

Lujan, L., Goñi, M. a. L., & Martini, R. E. (2022). Cellulose–chitosan biodegradable materials for insulating applications. ACS Sustainable Chemistry & Engineering, 10(36), 12000-12008.

Lulijwa, R., Rupia, E. J., & Alfaro, A. C. (2020). Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Reviews in Aquaculture, 12(2), 640-663. https://doi.org/https://doi.org/10.1111/raq.12344

Ma, J., Lei, Y., Khan, M. A., Wang, F., Chu, Y., Lei, W., Xia, M., & Zhu, S. (2019). Adsorption properties, kinetics & thermodynamics of tetracycline on carboxymethyl-chitosan reformed montmorillonite. International Journal of Biological Macromolecules, 124, 557-567.

Ma, J., Zhou, G., Chu, L., Liu, Y., Liu, C., Luo, S., & Wei, Y. (2017). Efficient Removal of Heavy Metal Ions with An EDTA Functionalized Chitosan/Polyacrylamide Double Network Hydrogel. ACS Sustainable Chemistry & Engineering, 5(1), 843-851. https://doi.org/10.1021/acssuschemeng.6b02181

Ma, W., Dai, J., Dai, X., Da, Z., & Yan, Y. (2015). Core–shell molecularly imprinted polymers based on magnetic chitosan microspheres for chloramphenicol selective adsorption. Monatshefte für Chemie-Chemical Monthly, 146, 465-474.

Mahmoud, M. E., Ali, S. A. A. A., Nassar, A. M. G., Elweshahy, S. M. T., & Ahmed, S. B. (2017). Immobilization of chitosan nanolayers on the surface of nano-titanium oxide as a novel nanocomposite for efficient removal of La(III) from water. International Journal of Biological Macromolecules, 101, 230-240. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2017.03.049

Mak, Y. W., & Leung, W. W.-F. (2019). Crosslinking of genipin and autoclaving in chitosan-based nanofibrous scaffolds: Structural and physiochemical properties. Journal of Materials Science, 54(15), 10941-10962.

Makaremi, M., Lim, C. X., Pasbakhsh, P., Lee, S. M., Goh, K. L., Chang, H., & Chan, E. S. (2016). Electrospun functionalized polyacrylonitrile–chitosan Bi-layer membranes for water filtration applications [10.1039/C6RA05942B]. RSC Advances, 6(59), 53882-53893. https://doi.org/10.1039/C6RA05942B

Medina, R. P., Nadres, E. T., Ballesteros, F. C., & Rodrigues, D. F. (2016). Incorporation of graphene oxide into a chitosan–poly(acrylic acid) porous polymer nanocomposite for enhanced lead adsorption [10.1039/C6EN00021E]. Environmental Science: Nano, 3(3), 638-646. https://doi.org/10.1039/C6EN00021E

Meler, J., Grimling, B., Biernat, P., & Pluta, J. (2013). Studies on adsorption chloramfenicol on chitosans in pharmaceutical “in vitro” model. Progress on Chemistry and Application of Chitin and its Derivatives, 18(18), 187-191.

Meler, J., Grimling, B., & Pluta, J. (2012). Studies of Norfloxacin adsorption on chitosan. Progress on Chemistry and Application of Chitin and its Derivatives(17), 103-110.

Meler, J., Grimling, B., Szcześniak, M., & Pluta, J. (2013). Studies on adsorption clarithromycin on chitosans degraded radiation in pharmaceutical “in vitro” model. Progress on Chemistry and Application of Chitin and its Derivatives, 18, 193-199.

Miranda, C. S., Silva, A. F. G., Seabra, C. L., Reis, S., Silva, M. M. P., Pereira-Lima, S. M., Costa, S. P., Homem, N. C., & Felgueiras, H. P. (2023). Sodium alginate/polycaprolactone co-axial wet-spun microfibers modified with N-carboxymethyl chitosan and the peptide AAPV for Staphylococcus aureus and human neutrophil elastase inhibition in potential chronic wound scenarios. Biomaterials Advances, 151, 213488.

Mishra, R. K., Mentha, S. S., Misra, Y., & Dwivedi, N. (2023). Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus, 6, 74-95. https://doi.org/https://doi.org/10.1016/j.wen.2023.08.002

Mohammadzadeh Pakdel, P., & Peighambardoust, S. J. (2018). Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydrate Polymers, 201, 264-279. https://doi.org/https://doi.org/10.1016/j.carbpol.2018.08.070

Mottier, P., Parisod, V., Gremaud, E., Guy, P. A., & Stadler, R. H. (2003). Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 994(1), 75-84. https://doi.org/https://doi.org/10.1016/S0021-9673(03)00484-9

Munns, R. K., Holland, D. C., Roybal, J. E., Storey, J. M., Long, A. R., Stehly, G. R., & Plakas, S. M. (2020). Gas Chromatographic Determination of Chloramphenicol Residues in Shrimp: Interlaboratory Study. Journal of AOAC International, 77(3), 596-601. https://doi.org/10.1093/jaoac/77.3.596

Nakayama, R.-i., Katsumata, K., Niwa, Y., & Namiki, N. (2020). Dependence of Water-Permeable Chitosan Membranes on Chitosan Molecular Weight and Alkali Treatment. Membranes, 10(11), 351. https://www.mdpi.com/2077-0375/10/11/351

Nicolich, R. S., Werneck-Barroso, E., & Marques, M. A. S. (2006). Food safety evaluation: Detection and confirmation of chloramphenicol in milk by high performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 565(1), 97-102. https://doi.org/https://doi.org/10.1016/j.aca.2006.01.105

Oladoja, N., Adelagun, R., Ahmad, A., Unuabonah, E., & Bello, H. (2014). Preparation of magnetic, macro-reticulated cross-linked chitosan for tetracycline removal from aquatic systems. Colloids and Surfaces B: Biointerfaces, 117, 51-59.

Ottenhall, A., Seppänen, T., & Ek, M. (2018). Water-stable cellulose fiber foam with antimicrobial properties for bio based low-density materials. Cellulose, 25(4), 2599-2613.

Ou, H., Chen, Q., Pan, J., Zhang, Y., Huang, Y., & Qi, X. (2015). Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion. Journal of Hazardous Materials, 289, 28-37. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.02.030

Pantović Pavlović, M. R., Stanojevic, B. P., Pavlovic, M. M., Mihailovic, M. D., Stevanovic, J. S., Panic, V. V., & Ignjatovic, N. L. (2021). Anodizing/anaphoretic electrodeposition of nano-calcium phosphate/chitosan lactate multifunctional coatings on titanium with advanced corrosion resistance, bioactivity, and antibacterial properties. ACS Biomaterials Science & Engineering, 7(7), 3088-3102.

Perrin, N., Mohammadkhani, G., Moghadam, F. H., Delattre, C., & Zamani, A. (2022). Biocompatible fibers from fungal and shrimp chitosans for suture application. Current Research in Biotechnology, 4, 530-536.

Platon, I.-V., Ghiorghita, C.-A., Lazar, M. M., Raschip, I. E., & Dinu, M. V. (2023). Chitosan sponges with instantaneous shape recovery and multistrain antibacterial activity for controlled release of plant-derived polyphenols. International Journal of Molecular Sciences, 24(5), 4452.

Priyadarshi, G., Raval, N. P., & Trivedi, M. H. (2022). Microwave-assisted synthesis of cross-linked chitosan-metal oxide nanocomposite for methyl orange dye removal from unary and complex effluent matrices. International Journal of Biological Macromolecules, 219, 53-67. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.07.239

Putra, E. K., Pranowo, R., Sunarso, J., Indraswati, N., & Ismadji, S. (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research, 43(9), 2419-2430. https://doi.org/https://doi.org/10.1016/j.watres.2009.02.039

Qu, X., Liu, H., Zhang, C., Lei, Y., Lei, M., Xu, M., Jin, D., Li, P., Yin, M., & Payne, G. F. (2018). Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. Acta Biomaterialia, 73, 190-203.

Ranjbari, S., Tanhaei, B., Ayati, A., Khadempir, S., & Sillanpää, M. (2020). Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study. International Journal of Biological Macromolecules, 155, 421-429.

Rasoulzadeh, H., Mohseni-Bandpei, A., Hosseini, M., & Safari, M. (2019). Mechanistic investigation of ciprofloxacin recovery by magnetite–imprinted chitosan nanocomposite: isotherm, kinetic, thermodynamic and reusability studies. International Journal of Biological Macromolecules, 133, 712-721.

Reijnders, L. (2009). The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polymer Degradation and Stability, 94(5), 873-876.

Ren, Y., Abbood, H. A., He, F., Peng, H., & Huang, K. (2013). Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chemical Engineering Journal, 226, 300-311. https://doi.org/https://doi.org/10.1016/j.cej.2013.04.059

Reynaud, F., Tsapis, N., Deyme, M., Vasconcelos, T. G., Gueutin, C., Guterres, S. S., Pohlmann, A. R., & Fattal, E. (2011). Spray-dried chitosan-metal microparticles for ciprofloxacin adsorption: Kinetic and equilibrium studies. Soft Matter, 7(16), 7304-7312.

Rezaei, H., Rastegar, S., & Naseri, S. (2019). Application of Chitosan and Activated Carbon Nano-composite in Removal of Nitrite, Phosphate, and Ammonia From Aquaculture Wastewater. Avicenna J Environ Health Eng, 6(2), 106-112. https://doi.org/10.34172/ajehe.2019.14

Rostamitabar, M., Ghahramani, A., Seide, G., Jockenhoevel, S., & Ghazanfari, S. (2022). Drug loaded cellulose–chitosan aerogel microfibers for wound dressing applications. Cellulose, 29(11), 6261-6281.

Sabourian, V., Ebrahimi, A., Naseri, F., Irani, M., & Rahimi, A. (2016). Fabrication of chitosan/silica nanofibrous adsorbent functionalized with amine groups for the removal of Ni(ii), Cu(ii) and Pb(ii) from aqueous solutions: batch and column studies [10.1039/C6RA00456C]. RSC Advances, 6(46), 40354-40365. https://doi.org/10.1039/C6RA00456C

Samuel, M. S., Shah, S. S., Subramaniyan, V., Qureshi, T., Bhattacharya, J., & Pradeep Singh, N. D. (2018). Preparation of graphene oxide/chitosan/ferrite nanocomposite for Chromium(VI) removal from aqueous solution. International Journal of Biological Macromolecules, 119, 540-547. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.07.052

Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725-759. https://doi.org/https://doi.org/10.1016/j.chemosphere.2006.03.026

Sethy, T. R., & Sahoo, P. K. (2019). Highly toxic Cr (VI) adsorption by (chitosan-g-PMMA)/silica bionanocomposite prepared via emulsifier-free emulsion polymerisation. International Journal of Biological Macromolecules, 122, 1184-1190. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2018.09.069

Sharma, G., Naushad, M., Al-Muhtaseb, A. a. H., Kumar, A., Khan, M. R., Kalia, S., Shweta, Bala, M., & Sharma, A. (2017). Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. International Journal of Biological Macromolecules, 95, 484-493. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.11.072

Sharma, R. K., Lalita, & Singh, A. P. (2017). Sorption of Pb(II), Cu(II), Fe(II) and Cr(VI) metal ions onto cross-linked graft copolymers of chitosan with binary vinyl monomer mixtures. Reactive and Functional Polymers, 121, 32-44. https://doi.org/https://doi.org/10.1016/j.reactfunctpolym.2017.10.015

Shen, C., Chen, H., Wu, S., Wen, Y., Li, L., Jiang, Z., Li, M., & Liu, W. (2013). Highly efficient detoxification of Cr(VI) by chitosan–Fe(III) complex: Process and mechanism studies. Journal of Hazardous Materials, 244-245, 689-697. https://doi.org/https://doi.org/10.1016/j.jhazmat.2012.10.061

Shimojo, A. A. M., Perez, A. G. M., Galdames, S. E. M., Brissac, I. C. d. S., & Santana, M. H. A. (2015). Performance of PRP associated with porous chitosan as a composite scaffold for regenerative medicine. The Scientific World Journal, 2015(1), 396131.

Shukla, S. K., Mishra, A. K., Arotiba, O. A., & Mamba, B. B. (2013). Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59, 46-58.

Singh, V., Sharma, A. K., & Sanghi, R. (2009). Poly (acrylamide) functionalized chitosan: an efficient adsorbent for azo dyes from aqueous solutions. Journal of Hazardous Materials, 166(1), 327-335.

Song, H.-F., Chen, A.-Z., Wang, S.-B., Kang, Y.-Q., Ye, S.-F., Liu, Y.-G., & Wu, W.-G. (2014). Preparation of chitosan-based hemostatic sponges by supercritical fluid technology. Materials, 7(4), 2459-2473.

Stoffregen, D. A., Bowser, P. R., & Babish, J. G. (1996). Antibacterial Chemotherapeutants for Finfish Aquaculture: A Synopsis of Laboratory and Field Efficacy and Safety Studies. Journal of Aquatic Animal Health, 8(3), 181-207. https://doi.org/https://doi.org/10.1577/1548-8667(1996)008<0181:ACFFAA>2.3.CO;2

Sun, K., Shi, Y., Xu, W., Potter, N., Li, Z., & Zhu, J. (2017). Modification of clays and zeolites by ionic liquids for the uptake of chloramphenicol from water. Chemical Engineering Journal, 313, 336-344.

Suzuki, S., Nakanishi, S., Tamminen, M., Yokokawa, T., Sato-Takabe, Y., Ohta, K., Chou, H.-Y., Muziasari, W. I., & Virta, M. (2019). Occurrence of sul and tet(M) genes in bacterial community in Japanese marine aquaculture environment throughout the year: Profile comparison with Taiwanese and Finnish aquaculture waters. Science of The Total Environment, 669, 649-656. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.03.111

Szabó, T., Veres, Á., Cho, E., Khim, J., Varga, N., & Dékány, I. (2013). Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433, 230-239.

Thornber, K., Verner‐Jeffreys, D., Hinchliffe, S., Rahman, M. M., Bass, D., & Tyler, C. R. (2020). Evaluating antimicrobial resistance in the global shrimp industry. Reviews in Aquaculture, 12(2), 966-986.

Tian, S., Zhang, C., Huang, D., Wang, R., Zeng, G., Yan, M., Xiong, W., Zhou, C., Cheng, M., & Xue, W. (2020). Recent progress in sustainable technologies for adsorptive and reactive removal of sulfonamides. Chemical Engineering Journal, 389, 123423.

Vilela, P. B., Dalalibera, A., Duminelli, E. C., Becegato, V. A., & Paulino, A. T. (2019). Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environmental Science and Pollution Research, 26(28), 28481-28489. https://doi.org/10.1007/s11356-018-3208-3

Vo, T. S., Hossain, M. M., Lee, J., Suhr, J., & Kim, K. (2023). Crosslinked 3D porous composite foams as adsorbents for efficient organic dye removal. Environmental Technology & Innovation, 29, 102986.

Vuković, G. D., Marinković, A. D., Čolić, M., Ristić, M. Đ., Aleksić, R., Perić-Grujić, A. A., & Uskoković, P. S. (2010). Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chemical Engineering Journal, 157(1), 238-248. https://doi.org/https://doi.org/10.1016/j.cej.2009.11.026

Wammer, K. H., Korte, A. R., Lundeen, R. A., Sundberg, J. E., McNeill, K., & Arnold, W. A. (2013). Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin. Water Research, 47(1), 439-448. https://doi.org/https://doi.org/10.1016/j.watres.2012.10.025

Wang, F., Yang, B., Wang, H., Song, Q., Tan, F., & Cao, Y. (2016). Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. Journal of Molecular Liquids, 222, 188-194.

Wang, M., Gu, Z., Li, B., Zhang, J., Yang, L., Zheng, X., Pan, F., & He, J. (2022). Bioactive Nanocomposite Microsponges for Effective Reconstruction of Critical-Sized Calvarial Defects in Rat Model. International Journal of Nanomedicine, 17, 6593.

Wang, R., Qian, J., Chen, X., Low, Z.-X., Chen, Y., Ma, H., Wu, H.-A., Doherty, C. M., Acharya, D., & Xie, Z. (2023). Pyro-layered heterostructured nanosheet membrane for hydrogen separation. Nature Communications, 14(1), 2161.

Wang, X., Liu, X., Xiao, C., Zhao, H., Zhang, M., Zheng, N., Kong, W., Zhang, L., Yuan, H., Zhang, L., & Lu, J. (2020). Triethylenetetramine-modified hollow Fe3O4/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate. Microporous and Mesoporous Materials, 297, 110041. https://doi.org/https://doi.org/10.1016/j.micromeso.2020.110041

Weng, X., Lin, S., Zhong, Y., & Chen, Z. (2013). Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions. Chemical Engineering Journal, 229, 27-34. https://doi.org/https://doi.org/10.1016/j.cej.2013.05.096

Wiwattanapatapee, R., Padoongsombat, N., Choochom, T., Tang, S., & Chaimongkol, A. (2002). Water flea Moina macrocopa as a novel biocarrier of norfloxacin in aquaculture. Journal of Controlled Release, 83(1), 23-28. https://doi.org/https://doi.org/10.1016/S0168-3659(02)00173-6

Wu, X., Huang, M., Zhou, T., & Mao, J. (2016). Recognizing removal of norfloxacin by novel magnetic molecular imprinted chitosan/γ-Fe2O3 composites: selective adsorption mechanisms, practical application and regeneration. Separation and Purification Technology, 165, 92-100.

Xu, X., Yu, J., Liu, C., Yang, G., Shi, L., & Zhuang, X. (2021). Xanthated chitosan/cellulose sponges for the efficient removal of anionic and cationic dyes. Reactive and Functional Polymers, 160, 104840.

Zhang, J., Wang, L., & Wang, A. (2007). Preparation and Properties of Chitosan-g-poly(acrylic acid)/Montmorillonite Superabsorbent Nanocomposite via in Situ Intercalative Polymerization. Industrial & Engineering Chemistry Research, 46(8), 2497-2502. https://doi.org/10.1021/ie061385i

Zhang, K.-y., Li, D., Wang, Y., & Wang, L.-j. (2023). Carboxymethyl chitosan/polyvinyl alcohol double network hydrogels prepared by freeze-thawing and calcium chloride cross-linking for efficient dye adsorption. International Journal of Biological Macromolecules, 253, 126897.

Zhang, L., Tang, S., He, F., Liu, Y., Mao, W., & Guan, Y. (2019). Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chemical Engineering Journal, 378, 122215. https://doi.org/https://doi.org/10.1016/j.cej.2019.122215

Zhang, L., Zeng, Y., & Cheng, Z. (2016). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 214, 175-191. https://doi.org/https://doi.org/10.1016/j.molliq.2015.12.013

Zhang, S., Dong, Y., Yang, Z., Yang, W., Wu, J., & Dong, C. (2016). Adsorption of pharmaceuticals on chitosan-based magnetic composite particles with core-brush topology. Chemical Engineering Journal, 304, 325-334.

Zhao, H., Zhang, K., Rui, S., & Zhao, P. (2020). Study on microcrystalline cellulose/chitosan blend foam gel material. Science and Engineering of Composite Materials, 27(1), 424-432.

Zhao, R., Ma, T., Zhao, S., Rong, H., Tian, Y., & Zhu, G. (2020). Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chemical Engineering Journal, 382, 122893.

Zheng, P.-Y., Ye, C.-C., Wang, X.-S., Chen, K.-F., An, Q.-F., Lee, K.-R., & Gao, C.-J. (2016). Poly(sodium vinylsulfonate)/chitosan membranes with sulfonate ionic cross-linking and free sulfate groups: preparation and application in alcohol dehydration. Journal of Membrane Science, 510, 220-228. https://doi.org/https://doi.org/10.1016/j.memsci.2016.02.060

Zhou, X., Dong, C., Yang, Z., Tian, Z., Lu, L., Yang, W., Wang, Y., Zhang, L., Li, A., & Chen, J. (2018). Enhanced adsorption of pharmaceuticals onto core-brush shaped aromatic rings-functionalized chitosan magnetic composite particles: Effects of structural characteristics of both pharmaceuticals and brushes. Journal of Cleaner Production, 172, 1025-1034.

Zhu, C., Liu, F., Zhang, Y., Wei, M., Zhang, X., Ling, C., & Li, A. (2016). Nitrogen-doped chitosan-Fe(III) composite as a dual-functional material for synergistically enhanced co-removal of Cu(II) and Cr(VI) based on adsorption and redox. Chemical Engineering Journal, 306, 579-587. https://doi.org/https://doi.org/10.1016/j.cej.2016.07.096

Published

2024-07-31

How to Cite

HAMID AMIRI, & MASOUD TAHERIYOUN. (2024). MAPPING CHITOSAN POTENTIALS FOR TREATING ANTIBIOTICS IN AQUACULTURE WASTEWATER. Planetary Sustainability, 2(2). Retrieved from https://journal.umt.edu.my/index.php/planetsust/article/view/571