POTENTIAL OF BIOFLOC TECHNOLOGY IN AQUACULTURE WASTEWATER TREATMENT

Authors

  • EDWARD TERHEMEN AKANGE Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia. Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University (formerly, Federal University of Agriculture), Makurdi, P.M.B.2373, Benue State, Nigeria.
  • NOR AZMAN KASAN Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala, Nerus, Terengganu, Malaysia.

DOI:

https://doi.org/10.46754/ps.2024.01.005

Keywords:

Sustainable practices, Water quality, Microbial communities, Environmental impact, Microbial biomass, Toxic remediation

Abstract

The increasing global demand for aquatic products and decline in wild fisheries pose a challenge in achieving the United Nations’ Sustainable Development Goal 14, which is to conserve and sustainably use marine resources. The depletion of fish populations due to overfishing, destruction of aquatic habitats as well as climate change has adversely affected aquatic ecosystems, which leads to further pressure in establishing food security. To meet the rising demand for fish products, countries have turned to aquaculture, but the industry itself faces many environmental challenges, particularly in wastewater management. This review explores the potential of using biofloc technology (BFT) to treat wastewater. BFT utilises microbial ecosystem processes to remove excess nutrients and acts as a natural “cleaning” mechanism. It transforms organic waste into valuable microbial biomass, which enhances water quality and minimises the ecological footprint of aquaculture. In this way, BFT reduces the amount of solid waste generated, increases the level of dissolved oxygen and creates an environment that is less conducive for the growth of harmful bacteria, thus reducing the need for chemical treatments. This paper also discusses the role of BFT in toxic remediation by analysing the nature and composition of aquaculture wastewater. This study provides a comprehensive overview of the mean values for various water quality parameters in aquaculture and biofloc water, and compares them with aquaculture standards.

References

Abakari, G., Wu, X., He, X., Fan, L., & Luo, G. (2022). Bacteria in biofloc technology aquaculture systems: roles and mediating factors. Reviews in Aquaculture, 14(3), 1260-1284. https://doi.org/10.1111/ raq.12649 DOI: https://doi.org/10.1111/raq.12649

Abraham, J. S., Sripoorna, S., Maurya, S., Makhija, S., Gupta, R., & Toteja, R. (2019). Techniques and tools for species identification in ciliates: A review. International Journal of Systematic and Evolutionary Microbiology, 69(4), 877-894. https://doi.org/10.1099/ijsem.0.003176 DOI: https://doi.org/10.1099/ijsem.0.003176

Ahmad, A. L., Chin, J. Y., Mohd Harun, M. H. Z., & Low, S. C. (2022). Environmental impacts and imperative technologies towards sustainable aquaculture wastewater: treatment of A review. Journal of Water Process Engineering, 46, 102553. https://doi.org/10.1016/j. jwpe.2021.102553 DOI: https://doi.org/10.1016/j.jwpe.2021.102553

Alfeus, A., & Gabriel, N. N. (2023). Applications of aquatic plants in the remediation of aquaculture wastewater: An opportunity for African aquaculture. In Gabriel, N.N., Omoregie, E., Abasubong, K.P. (Eds.), Emerging sustainable aquaculture innovations in Africa. Springer, Singapore. https://doi.org/10.1007/978-981-19-74519_13 DOI: https://doi.org/10.1007/978-981-19-7451-9_13

Anawar, H. M., & Chowdhury, R. (2020). Remediation of polluted riverwater by biological, chemical, ecological and engineering processes. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/su12177017 DOI: https://doi.org/10.3390/su12177017

An, Q., Chen, Y., Tang, M., Zhao, B., Deng, S., & Li, Z. (2023). The mechanism of extracellular polymeric substances in the formation of activated sludge flocs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 663, 131009. https:// doi.org/10.1016/j.colsurfa.2023.131009 DOI: https://doi.org/10.1016/j.colsurfa.2023.131009

Arostegui, M. C., Anderson, C. M., Benedict, R. F., Dailey, C., Fiorenza, E. A., & Jahn, A. R. (2021). Approaches to regulating recreational fisheries: Balancing biology with angler satisfaction. In Reviews in Fish Biology and Fisheries, 31(3). https://doi. org/10.1007/s11160-021-09662-y DOI: https://doi.org/10.1007/s11160-021-09662-y

Asiri, F., & Chu, K. H. 2020. A novel recirculating aquaculture sustainable aquaculture: system for Enabling wastewater reuse and conversion of wasteto-immune-stimulating fish feed. ACS Sustainable Chemistry and Engineering, 8(49), 18094-18105. https://doi.org/10.1021/acssuschemeng.0c06375 DOI: https://doi.org/10.1021/acssuschemeng.0c06375

Athukorala, A. D. S. N. P. (2021). Solubilization of Micronutrients Using Indigenous Microorganisms. In Microbial Technology for Sustainable Environment. Singapore: Springer. https://doi.org/10.1007/978-98116-3840-4_21 DOI: https://doi.org/10.1007/978-981-16-3840-4_21

Boehm, A. B., Bell, C. D., Fitzgerald, N. J. M., Gallo, E., Higgins, C. P., Hogue, T. S., Luthy, R. G., Portmann, A. C., Ulrich, B. A., & Wolfand, J. M. (2020). Biocharaugmented biofilters to improve pollutant removal from stormwater-can they improve receiving water quality? In Environmental Science: Water Research and Technology, 6(6). https://doi.org/10.1039/d0ew00027b DOI: https://doi.org/10.1039/D0EW00027B

Boyd, C. E. (2020). Suspended solids, color, turbidity, and light. In Water Quality. Cham: Springer. https://doi.org/10.1007/978-3030-23335-8_6 DOI: https://doi.org/10.1007/978-3-030-23335-8_6

Bulat, D., Șaptefrați, N., Ungureanu, L., & Bulat, D. (2023). Ichthyological science - at the basis of the regulation of the protection and rational use of aquatic biological resources. Bulletin of the Academy of Sciences of Moldova Life Sciences, 3(347), 78-86. https://doi.org/10.52388/1857064x.2022.3.09 DOI: https://doi.org/10.52388/1857-064X.2022.3.09

Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Wei, Q., & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 387, 121682. https://doi.org/10.1016/j. jhazmat.2019.121682 DOI: https://doi.org/10.1016/j.jhazmat.2019.121682

Chen, X., He, Z., Zhao, J., Liao, M., Xue, Y., Zhou, J., Hoare, R., Monaghan, S. J., Wang, N., Pang, H., & Sun, C. (2022). Metagenomic analysis of bacterial communities and antibiotic resistance genes in penaeus monodon biofloc-based aquaculture environments. Frontiers in Marine Science, 8, 762345. https://doi. org/10.3389/fmars.2021.762345 DOI: https://doi.org/10.3389/fmars.2021.762345

Chiquito-Contreras, R. G., Hernandez-Adame, L., Alvarado-Castillo, G., MartínezHernández, M. de J., Sánchez-Viveros, G., Chiquito-Contreras, C. J., & HernandezMontiel, L. G. (2022). Aquaculture— production system and waste management for agriculture fertilization—A review. Sustainability (Switzerland), 14(12), 7257. https://doi.org/10.3390/su14127257 DOI: https://doi.org/10.3390/su14127257

Da Silva, J. L. S., Carneiro, A. P. C., Brito, A. L. C., Oliveira, A. V. S., Vieira, J. L., Soares, R. C., De Freitas, R. M., & De Sousa, O. V. (2023). In vitro manipulation of the bacterial community to improve the performance of bioflocs in aquaculture systems. Anais Da Academia Brasileira de Ciencias, 95(1), e20220311. https://doi.org/10.1590/00013765202320220311 DOI: https://doi.org/10.1590/0001-3765202320220311

Dauda, A. B., Ajadi, A., Tola-Fabunmi, A. S., & Akinwole, A. O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. In Aquaculture and Fisheries, 4(3), 81-88. https://doi.org/10.1016/j.aaf.2018.10.002 DOI: https://doi.org/10.1016/j.aaf.2018.10.002

de Moraes, K. R., Souza, A. T., Bartoň, D., Blabolil, P., Muška, M., Prchalová, M., Randák, T., Říha, M., Vašek, M., Turek, J., Tušer, M., Žlábek, V., & Kubečka, J. (2023). Can a protected area help improve f ish populations under heavy recreation f ishing? Water (Switzerland), 15(4). https:// doi.org/10.3390/w15040632 DOI: https://doi.org/10.3390/w15040632

Dong, S. -L., & Dong, Y. -W. (2023). Sustainability of aquaculture production systems. In Dong, S. L., Tian, X. L., Gao, Q. F., Dong, Y. W. (Eds.), Aquaculture ecology. Singapore: Springer. https://doi.org/10.1007/978-981-195486-3_15 DOI: https://doi.org/10.1007/978-981-19-5486-3_15

Duarte, C. M., Agusti, S., Barbier, E., Britten, G. L., Castilla, J. C., Gattuso, J. P., Fulweiler, R. W., Hughes, T. P., Knowlton, N., Lovelock, C. E., Lotze, H. K., Predragovic, M., Poloczanska, E., Roberts, C., & Worm, B. (2020). Rebuilding marine life. Nature, 580, (7801), 39-51. https:// doi.org/10.1038/s41586-020-2146-7 DOI: https://doi.org/10.1038/s41586-020-2146-7

Elvines, D. M., MacLeod, C. K., Ross, D. J., Hopkins, G. A., & White, C. A. (2023). Fate and effects of fish farm organic waste in marine systems: Advances in understanding using biochemical approaches with implications for environmental management. Reviews in Aquaculture, 16(1): 66-85. https://doi. org/10.1111/raq.12821 DOI: https://doi.org/10.1111/raq.12821

Engin, K., & Koyuncu, C. E. (2023). The recent advances to increase nutrient utilization of dietary plant proteins by enzyme supplementation and fermentation in rainbow trout (Oncorhynchus mykiss): A review. Tarim Bilimleri Dergisi, 29(4), 960-972. https://doi.org/10.15832/ ankutbd.1192888 DOI: https://doi.org/10.15832/ankutbd.1192888

Font Nájera, A., Serwecińska, L., & MankiewiczBoczek, J. (2021). Culturable nitrogentransforming bacteria from sequential sedimentation biofiltration systems and their potential for nutrient removal in urban polluted rivers. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-862123 DOI: https://doi.org/10.1038/s41598-021-86212-3

García-Sánchez, M., & Száková, J. (2015). Biological Remediation of MercuryPolluted Environments. Plant Metal Interaction: Emerging Remediation Techniques. https://doi.org/10.1016/ B978-0-12-803158-2.00012-6.

Han, P., Lu, Q., Fan, L., & Zhou, W. (2019). A review on the use of microalgae for sustainable aquaculture. Applied Sciences (Switzerland), 9(11). https://doi. org/10.3390/app9112377. DOI: https://doi.org/10.3390/app9112377

Henriksson, P. J. G., Banks, L. K., Suri, S. K., Pratiwi, T. Y., Fatan, N. A., & Troell, M. (2019). Indonesian aquaculture futuresidentifying interventions for reducing environmental impacts. Environmental Research Letters, 14(12), 124062. https:// doi.org/10.1088/1748-9326/ab4b79 DOI: https://doi.org/10.1088/1748-9326/ab4b79

Huck, W. (2023). Goal 14 Conserve and sustainably use the oceans, seas and marine resources for sustainable development. In Sustainable Development Goals (pp. 520-553). https://doi. org/10.5040/9781509934058.0020 DOI: https://doi.org/10.5771/9783748902065-520

Iber, B. T., Torsabo, D., Chik, C. E. N. C. E., Wahab, F., Sheikh Abdullah, S. R., Abu Hassan, H., & Kasan, N. A. (2023). Response Surface Methodology (RSM) approach to optimization of coagulationf locculation of aquaculture wastewater treatment using chitosan from carapace of giant freshwater prawn Macrobrachium rosenbergii. Polymers, 15(4), 1058. https://doi.org/10.3390/polym15041058 DOI: https://doi.org/10.3390/polym15041058

Iunes, R. S., Branco, P. C., Pressinotti, L. N., de Carvalho, R. A. P. de L. F., & da Silva, J. R. M. C. (2021). Does the heterotrophic system influence the cellular immune response of Litopenaeus vannamei shrimp? In vitro phagocytosis indices and superoxide anion production comparisons. Fish and Shellfish Immunology Reports, 2, 100009. https://doi.org/10.1016/j. fsirep.2021.100009 DOI: https://doi.org/10.1016/j.fsirep.2021.100009

Jaganathan, J. S., Abdullah, S. R. S., Ismail, N. ‘Izzati, & Sharuddin, S. S. N. (2022). Coagulation-flocculation process nutrient-rich suspended solids of from aquaculture effluent using bioflocculant. Journal of Biochemistry, Microbiology and Biotechnology, 10(SP2), 46-56. https://doi.org/10.54987/jobimb.v10isp2.728 DOI: https://doi.org/10.54987/jobimb.v10iSP2.728

Jamal, M. T., Broom, M., Al-Mur, B. A., Al Harbi, M., Ghandourah, M., Al Otaibi, A., & Haque, M. F. (2020). Biofloc technology: Emerging microbial biotechnology for the improvement of aquaculture productivity. Polish Journal of Microbiology, 69(4), 401-409. https://doi.org/10.33073/PJM2020-049 DOI: https://doi.org/10.33073/pjm-2020-049

Jima, T. T., & Megersa, M. (2018). Ethnobotanical study of medicinal plants used to treat human diseases in Berbere District, Bale Zone of Oromia Regional State, Southeast Ethiopia. Evidence-Based Complementary and Alternative Medicine, 2018, 8602945. https://doi.org/10.1155/2018/8602945 DOI: https://doi.org/10.1155/2018/8602945

Ji, W. X., Tian, Y. C., Cai, M. H., Jiang, B. C., Cheng, S., Li, Y., Zhou, Q., Li, B. Q., Chen, B. Y., Zheng, X., Li, W. T., & Li, A. M. 2023. Simultaneous determination of dissolved organic nitrogen, nitrite, nitrate and ammonia using size exclusion chromatography coupled with nitrogen detector. Journal of Environmental Sciences (China), 125, 309-318. https:// doi.org/10.1016/j.jes.2021.11.026 DOI: https://doi.org/10.1016/j.jes.2021.11.026

Jones, E. R., Van Vliet, M. T. H., Qadir, M., & Bierkens, M. F. P. (2021). Countrylevel and gridded estimates of wastewater production, collection, treatment, and reuse. Earth System Science Data, 13(2), 237-254. https://doi.org/10.5194/essd-13237-2021 DOI: https://doi.org/10.5194/essd-13-237-2021

Jones, S., & Santini, J. M. (2023). Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms. In Essays in Biochemistry, 67(4), 685-699. https:// doi.org/10.1042/EBC20220257 DOI: https://doi.org/10.1042/EBC20220257

Kasan, N. A., Manan, H., Tuan Ismail, T. I., Abdul Salam, A. I., Abdul Rahim, A. I., Kamarruzan, A. S., Ishak, A. N., Deraman, S., Nasrin, Z., Che Engku Chik, C. E. N., Che Hashim, N. F., & Terkula Iber, B. (2021). Effect of Biofloc product-Rapid BFTTM vs. clear water system in improving the water quality and growth performances of Pacific Whiteleg shrimp, P. vannamei, cultured in indoor aquaculture system. Aquaculture Research, 52(12), 6504–6513. https://doi.org/10.1111/are.15519 DOI: https://doi.org/10.1111/are.15519

Khanjani, M. H., Sharifinia, M., & Hajirezaee, S. (2023). Strategies for promoting sustainable aquaculture in arid and semiarid areas. Annals of Animal Science. Manuscript submitted for publication. https://doi.org/10.2478/aoas-2023-0073 Koike, S., & Yamasaki, K. (2020). Melanogenesis connection with innate immunity and tolllike receptors. International Journal of Molecular Sciences, 21(24), 9796. https:// doi.org/10.3390/ijms21249769

Kumar, V. (2020). Phagocytosis: Phenotypically simple yet a mechanistically complex process. International Reviews of Immunology, 39(3), 118-150. https://doi.or g/10.1080/08830185.2020.1732958 DOI: https://doi.org/10.1080/08830185.2020.1732958

Kurniawan, S. B., Abdullah, S. R. S., Imron, M. F., Said, N. S. M., Ismail, N. ‘Izzati, Hasan, H. A., Othman, A. R., & Purwanti, I. F. (2020). Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. International Journal of Environmental Research and Public Health, 17(24), 9312. https://doi.org/10.3390/ijerph17249312 DOI: https://doi.org/10.3390/ijerph17249312

Kurniawati, F. A., Masithah, E. D., & Rahardja, B. S. (2021). The effect of commercial probiotics on the phytoplankton diversity associated with biofloc. World’s Veterinary Journal, 11(4), 725-730. https://doi.org/10.54203/scil.2021.wvj92 DOI: https://doi.org/10.54203/scil.2021.wvj92

Lee, H. J., Woo, Y., Hahn, T. W., Jung, Y. M., & Jung, Y. J. (2020). Formation and maturation of the phagosome: A key mechanism in innate immunity against intracellular bacterial infection. Microorganisms, 8(9), 1298. https://doi.org/10.3390/microorganisms8091298 DOI: https://doi.org/10.3390/microorganisms8091298

Liu, Y., Chen, J., Hu, H., Qu, K., & Cui, Z. (2022). A low-cost electrochemical method for the determination of sulfadiazine in aquaculture wastewater. International Journal of Environmental Research and Public Health, 19(24), 16945. https://doi. org/10.3390/ijerph192416945 DOI: https://doi.org/10.3390/ijerph192416945

Liu, Y., Wang, X., & Sun, J. (2022). Transformations of diatom-derived dissolved organic matter by Bacillus pumilus under warming and acidification conditions. Frontiers in Microbiology, 13, 833670. https://doi.org/10.3389/fmicb.2022.833670 DOI: https://doi.org/10.3389/fmicb.2022.833670

Lumaquin-Yin, D., Montal, E., Johns, E., Baggiolini, A., Huang, T. H., Ma, Y., LaPlante, C., Suresh, S., Studer, L., & White, R. M. (2023). Lipid droplets are a metabolic vulnerability in melanoma. Nature Communications, 14(1), 3192. https://doi.org/10.1038/s41467-02338831-9 DOI: https://doi.org/10.1038/s41467-023-38831-9

Markande, A. R., Kapagunta, C., Patil, P. S., & Nayak, B. B. (2016). Effective remediation of fish processing waste using mixed culture biofilms capable of simultaneous nitrification and denitrification. Journal of Basic Microbiology, 56(9). 1046-1050. https://doi.org/10.1002/jobm.201500723 DOI: https://doi.org/10.1002/jobm.201500723

McEwan, D. G. (2017). Host-pathogen interactions and subversion of autophagy. Essays in Biochemistry, 61(6), 687-697. https://doi. org/10.1042/EBC20170058 Mohajeri, M., Eskandari, M., Ghazali, Z. S., & Ghazali, H. S. (2022). Cell encapsulation in alginate-based microgels using droplet microfluidics; A review on gelation methods and applications. Biomedical Physics and Engineering Express, 8(2), 022001. https://doi.org/10.1088/20571976/ac4e2d DOI: https://doi.org/10.1088/2057-1976/ac4e2d

Nagaraju, T. V., Sunil, B. M., & Chaudhary, B. (2023). Impact of aquaculture solid waste on environment in the delta region of Andhra Pradesh: A case study. In Lecture notes in civil engineering (Vol. 298). Singapore: Springer. https://doi. org/10.1007/978-981-19-6774-0_35 DOI: https://doi.org/10.1007/978-981-19-6774-0_35

Nag, A., Sethi, S., & Kumawat, T. (2023). Constructed wetlands and vermifiltration two successful alternatives of wastewater reuse: A commentary on development of these alternate strategies of wastewater treatment. In Shah, M. P. (Eds.), Industrial wastewater reuse: Applications, prospects and challenges (pp 1-29). Singapore: Springer. https://doi.org/10.1007/978-98199-2489-9_1 DOI: https://doi.org/10.1007/978-981-99-2489-9_1

Nisar, U., Peng, D., Mu, Y., & Sun, Y. (2022). A solution for sustainable utilization of aquaculture waste: A comprehensive review of biofloc technology and aquamimicry. Frontiers in Nutrition, 8, 791738. https://doi. org/10.3389/fnut.2021.791738 DOI: https://doi.org/10.3389/fnut.2021.791738

Noor, N., & Harun, S. N. 2022. Towards Sustainable Aquaculture: A Brief Look into Management Issues. Applied Sciences (Switzerland), 12(15), 7448. https://doi. org/10.3390/app12157448 Ojha, A., Mishra, A., & Tiwary, D. (2022). Microplastic in the aquatic ecosystem and human health implications. In Plastic and microplastic in the environment: Management and health risks. Wiley. https://doi.org/10.1002/9781119800897.ch4 DOI: https://doi.org/10.1002/9781119800897.ch4

Oktaviyani, D., Pratiwi, N. T. M., Krisanti, M., & Susanti, E. (2023). Floating treatment wetlands using Vetiveria zizanioides and Heliconia psittacorum in aquaculture wastewater treatment. IOP Conference Series: Earth and Environmental Science, 1201(1), 012074. https://doi. org/10.1088/1755-1315/1201/1/012074 DOI: https://doi.org/10.1088/1755-1315/1201/1/012074

Omitoyin, B., Fagade, O., Ogunjobi, A., Ogbona, J., Ajani, E., & Oyelade, A. 2009. Preliminary investigation on the conversion of aquaculture solid waste into single cell protein (SCP) from recirculatory slug for fish feed. Nigerian Journal of Fisheries, 5(2). https://doi. org/10.4314/njf.v5i2.46846 DOI: https://doi.org/10.4314/njf.v5i2.46846

Priyadarshini, M., Sathe, S. M., & Ghangrekar, M. M. (2023). Hybrid treatment solutions for removal of micropollutant from wastewaters. In Microconstituents in the Environment: Occurrence, Fate, Removal, and Management. Wiley. https://doi. org/10.1002/9781119825289.ch19 DOI: https://doi.org/10.1002/9781119825289.ch19

Putra, I., Effendi, I., Lukistyowati, I., Tang, U. M., Fauzi, M., Suharman, I., & Muchlisin, Z. A. (2020). Effect of different biofloc starters on ammonia, nitrate, and nitrite concentrations in the cultured tilapia Oreochromis niloticus system. F1000Research, 9, 293. https://doi. org/10.12688/f1000research.22977.1 DOI: https://doi.org/10.12688/f1000research.22977.3

Rees, S. E., Sheehan, E. V., Stewart, B. D., Clark, R., Appleby, T., Attrill, M. J., Jones, P. J. S., Johnson, D., Bradshaw, N., Pittman, S., Oates, J., & Solandt, J. L. (2020). Emerging themes to support ambitious UK marine biodiversity conservation. Marine Policy, 117, 103864. https://doi. org/10.1016/j.marpol.2020.103864 DOI: https://doi.org/10.1016/j.marpol.2020.103864

Reinoso, S., Muñoz, D., Cedeño, R., Tirado, J. O., Bangeppagari, M., & Mulla, S. I. (2019). Adaptation of “Biofloc” aquatic system for polyculture with tilapia (Oreochromis sp.) and river prawn (Macrobrachium sp.). Journal of Microbiology, Biotechnology and Food Sciences, 8(5), 1130-1134. https://doi. org/10.15414/jmbfs.2019.8.5.1130-1134 DOI: https://doi.org/10.15414/jmbfs.2019.8.5.1130-1134

Sadi, N. H., Agustiyani, D., Ali, F., Badjoeri, M., & Triyanto. (2022). Application of Biofloc technology in Indonesian eel Anguilla bicolor fish culture: Water quality profile. IOP Conference Series: Earth and Environmental Science, 1062(1), 012006. https://doi.org/10.1088/17551315/1062/1/012006 DOI: https://doi.org/10.1088/1755-1315/1062/1/012006

Saha, B., & Azam, F. A. Bin. (2021). Probable ways of tannery’s solid and liquid waste management in Bangladesh-an overview. Textile and Leather Review, 4(2), 76-95. https://doi.org/10.31881/TLR.2020.25 Sharma, M., & Gautam, N. 2018. Impact of microbial diversity on environmental stability. In Parmar, V., Malhotra, P., Mathur, D. (Eds.), Green chemistry in environmental sustainability and chemical education (pp. 81-91). https://doi. org/10.1007/978-981-10-8390-7_8 DOI: https://doi.org/10.31881/TLR.2020.25

Sharma, V. K., Manoli, K., & Ma, X. (2022). Reactivity of nitrogen species with inorganic and organic compounds in water. Chemosphere, 302, 134911. https://doi. org/10.1016/j.chemosphere.2022.134911 Shen, M., Song, B., Zhou, C., Almatrafi, E., Hu, T., Zeng, G., & Zhang, Y. (2022). Recent advances in impacts of microplastics on nitrogen cycling in the environment: A review. Science of the Total Environment, 815, 152740. https://doi.org/10.1016/j. scitotenv.2021.152740 DOI: https://doi.org/10.1016/j.chemosphere.2022.134911

Sonwani, R. K. (2023). Current perspectives of anammox-denitrification technology and its application in industrial wastewater treatment. In Shah, M. P. (Eds.), Anammox technology in industrial wastewater treatment (pp. 91-100). https://doi. org/10.1007/978-981-99-3459-1_6 DOI: https://doi.org/10.1007/978-981-99-3459-1_6

Stieglitz, J. D., Touchton, M., Benetti, D. D., Rothen, D., Clark-Hughes, A., Haus, B. K., Zangroniz, A., & Suman, D. O. (2023). Global marine aquaculture development. In Oceans and society: An introduction to marine studies (1st ed., pp. 1-19). https:// doi.org/10.4324/9781003058151-7 DOI: https://doi.org/10.4324/9781003058151-7

Su, X., Sutarlie, L., & Loh, X. J. (2020). Sensors, biosensors, technologies for and analytical aquaculture water quality. Research, 2020, 1-15. https://doi. org/10.34133/2020/8272705 DOI: https://doi.org/10.34133/2020/8272705

Tom, A. P., Jayakumar, J. S., Biju, M., Somarajan, J., & Ibrahim, M. A. (2021). Aquaculture wastewater treatment technologies and their sustainability: A review. Energy Nexus, 4, 100022. https:// doi.org/10.1016/j.nexus.2021.100022 DOI: https://doi.org/10.1016/j.nexus.2021.100022

Verdegem, M., Buschmann, A. H., Latt, U. W., Dalsgaard, A. J. T., & Lovatelli, A. (2023). The contribution of aquaculture systems to global aquaculture production. Journal of the World Aquaculture Society, 54(2), 206250. https://doi.org/10.1111/jwas.12963 DOI: https://doi.org/10.1111/jwas.12963

Wu, C., Hu, X., Wang, H., Lin, Q., Shen, C., & Lou, L. (2023). Exploring key physicochemical sediment properties influencing bioleaching of heavy metals. Journal of Hazardous Materials, 445, 130506. https://doi.org/10.1016/j. jhazmat.2022.130506 DOI: https://doi.org/10.1016/j.jhazmat.2022.130506

Yavuzcan Yıldız, H., & Pulatsü, S. (2022). Towards zero waste: Sustainable waste management in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 39(4), 341-348. https://doi.org/10.12714/ egejfas.39.4.11 DOI: https://doi.org/10.12714/egejfas.39.4.11

Zhang, S., Feng, T., Ji, J., Wang, L., & An, C. (2022). Serine protease SP7 cleaves prophenoloxidase and is regulated by two serpins in Ostrinia furnacalis melanization. Insect Biochemistry and Molecular Biology, 141, 103699. https:// doi.org/10.1016/j.ibmb.2021.103699 DOI: https://doi.org/10.1016/j.ibmb.2021.103699

Zheng, R., Cai, R., Liu, R., Liu, G., & Sun, C. (2020). Bacteroidetes contribute to the carbon and nutrient cycling of deep sea through breaking down diverse glycans. bioRxiv. Manuscript in preparation. https:// doi.org/10.1101/2020.11.07.372516 DOI: https://doi.org/10.1101/2020.11.07.372516

Downloads

Published

2024-07-30

How to Cite

EDWARD TERHEMEN AKANGE, & NOR AZMAN KASAN. (2024). POTENTIAL OF BIOFLOC TECHNOLOGY IN AQUACULTURE WASTEWATER TREATMENT. Planetary Sustainability, 2(1). https://doi.org/10.46754/ps.2024.01.005