THE SIGNIFICANCE OF BIOMASS IN ACHIEVING A GLOBAL BIOECONOMY

Authors

  • HOSSEIN SHAHBEIK Henan Province Forest Resources Sustainable Development and High-value Utilisation Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
  • WANXI PENG Henan Province Forest Resources Sustainable Development and High-value Utilisation Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.

DOI:

https://doi.org/10.46754/ps.2024.01.004

Keywords:

Biomass, Bioeconomy, Thermochemical conversion, Bioenergy, Bibliometric analysis

Abstract

This manuscript explores the imperative role of biomass in shaping the global bioeconomy, necessitated by escalating energy demands and the consequent environmental challenges posed by fossil fuel dependency. This paper delineates the diverse forms of biomass — from lignocellulosic materials to organic waste and algae — each holding distinct chemical compositions and applications within the bioeconomy. Investigating biomass conversion technologies (i.e. thermochemical, biochemical and chemical) provides a comprehensive understanding of their merits and limitations in energy production and resource optimisation. Specifically, it delves into pyrolysis, gasification, hydrothermal liquefaction, torrefaction, anaerobic digestion and transesterification, elucidating their mechanisms and contributions to energy generation and biofuel production. Moreover, the study incorporates bibliometric analysis, depicting thematic clusters in biomass research and highlighting the evolving trends in its application within the bioeconomy. The primary focus of studies within the initial cluster revolves around utilising biomass for a global bioeconomy through thermochemical conversion methods. Overall, this review underscores the indispensable role of biomass  as a renewable and adaptable resource, pivotal in steering the transition towards a sustainable bio-based economy amid global environmental and socio-economic challenges.

References

Acharya, S., Kawale, H., Singh, A., Kishore, N. (2020). Thermochemical conversion of Polyalthia longifolia leaves at di ff erent temperatures and characterization of their products. Fuel, 280, 118574. https://doi. org/10.1016/j.fuel.2020.118574 DOI: https://doi.org/10.1016/j.fuel.2020.118574

Azargohar, R., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2019). Physico-chemistry of biochars produced through steam gasification and hydro-thermal gasification of canola hull and canola meal pellets. Biomass and Bioenergy, 120, 458-470. https://doi.org/10.1016/j. biombioe.2018.12.011 DOI: https://doi.org/10.1016/j.biombioe.2018.12.011

Bulushev, D. A., & Ross, J. R. H. (2011). Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review. Catalysis Today, 171, 1-13. https://doi. org/10.1016/j.cattod.2011.02.005 DOI: https://doi.org/10.1016/j.cattod.2011.02.005

Chen, W. -H., Lin, B. -J., Lin, Y. -Y., Chu, Y. -S., Ubando, A. T., Show, P. L., Ong, H. C., Chang, J. -S., Ho, S. -H., Culaba, A. B., Pétrissans, A., & Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j. pecs.2020.100887 DOI: https://doi.org/10.1016/j.pecs.2020.100887

Chen, W. -H., Peng, J., & Bi, X. T. (2015). A stateof-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866. https://doi.org/10.1016/j.rser.2014.12.039 DOI: https://doi.org/10.1016/j.rser.2014.12.039

Choudhary, P., Assemany, P. P., Naaz, F., Bhattacharya, A., Castro, J. de S., Couto, E. de A. do C., Calijuri, M. L., Pant, K. K., Malik, A. (2020). A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Science of the Total Environment, 726, 137961. https:// doi.org/10.1016/j.scitotenv.2020.137961 DOI: https://doi.org/10.1016/j.scitotenv.2020.137961

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W. M., (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j. jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070

El-Chichakli, B., von Braun, J., Lang, C., Barben, D., & Philp, J. (2016). Policy: Five cornerstones of a global bioeconomy. Nature, 535, 221-223. https://doi.org/10.1038/535221a DOI: https://doi.org/10.1038/535221a

Fan, L., Zhang, H., Li, J. J., Wang, Y., Leng, L., Li, J. J., Yao, Y., Lu, Q., Yuan, W., & Zhou, W., (2020). Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: A review. Algal Research, 47, 101819. https:// doi.org/10.1016/j.algal.2020.101819 DOI: https://doi.org/10.1016/j.algal.2020.101819

Gao, N., Kamran, K., Quan, C., & Williams, P. T. (2020). Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science, 79, 100843. https://doi.org/10.1016/j. pecs.2020.100843 Gollakota, A. R. K., Kishore, N., Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 81, 1378-1392. https://doi. org/10.1016/j.rser.2017.05.178

La Villetta, M., Costa, M., & Massarotti, N. (2017). Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews, 74, 71–88. https://doi.org/10.1016/j.rser.2017.02.027 DOI: https://doi.org/10.1016/j.rser.2017.02.027

Liu, X., Zhu, F., Zhang, R., Zhao, L., & Qi, J. (2021). Recent progress on biodiesel production from municipal sewage sludge. Renewable and Sustainable Energy Reviews, 135, 110260. https://doi. org/10.1016/j.rser.2020.110260 DOI: https://doi.org/10.1016/j.rser.2020.110260

Nabuurs, G. -J., Lindner, M., Verkerk, P. J., Gunia, K., Deda, P., Michalak, R., Grassi, G., (2013). First signs of carbon sink saturation in European forest biomass. Nature Climate Change, 3, 792-796. https:// doi.org/10.1038/nclimate1853 Nanda, S., & Berruti, F. (2021). A technical review of bioenergy and resource recovery from municipal solid waste. Journal of Hazardous Materials, 403, 123970. https:// doi.org/10.1016/j.jhazmat.2020.123970 DOI: https://doi.org/10.1038/nclimate1853

Ong, H. C., Chen, W. H., Singh, Y., Gan, Y. Y., Chen, C. Y., Show, P. L. (2020). A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach. Energy Conversion and Management, 209. https:// doi.org/10.1016/j.enconman.2020.112634 DOI: https://doi.org/10.1016/j.enconman.2020.112634

Perkins, G., Bhaskar, T., & Konarova, M., (2018). Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable and Sustainable Energy Reviews, 90, 292-315. https://doi. org/10.1016/j.rser.2018.03.048 DOI: https://doi.org/10.1016/j.rser.2018.03.048

Röder, M., & Welfle, A. (2019). Bioenergy, In Managing global warming (pp. 379-398). Elsevier. Sankaran, R., Markandan, K., Khoo, K. S., Cheng, C. K., Ashokkumar, V., Deepanraj, B., Show, P. L. (2021). The expansion of lignocellulose biomass conversion into bioenergy via nanobiotechnology. Frontiers in Nanotechnology, 3, 793528. https://doi. org/10.3389/fnano.2021.793528 DOI: https://doi.org/10.3389/fnano.2021.793528

Sekar, M., Mathimani, T., Alagumalai, A., Chi, N. T. L., Duc, P. A., Bhatia, S. K., Brindhadevi, K., Pugazhendhi, A. (2021). A review on the pyrolysis of algal biomass for biochar and bio-oil – Bottlenecks and scope. Fuel, 283, 119190. https://doi.org/10.1016/j. fuel.2020.119190 DOI: https://doi.org/10.1016/j.fuel.2020.119190

Shahbeig, H., Shafizadeh, A., Rosen, M. A., & Sels, B. F. (2022). Exergy sustainability analysis of biomass gasification: A critical review. Biofuel Research Journal, 9, 1592-1607. https://doi. org/10.18331/BRJ2022.9.1.5 DOI: https://doi.org/10.18331/BRJ2022.9.1.5

Sharma, A., Wang, S., Pareek, V., Yang, H., & Zhang, D. (2015). Multi-fluid reactive modeling of f luidized bed pyrolysis process. Chemical Engineering Science, 123, 311-321. https://doi. org/10.1016/j.ces.2014.11.019 DOI: https://doi.org/10.1016/j.ces.2014.11.019

Situmorang, Y. A., Zhao, Z., Yoshida, A., Abudula, A., & Guan, G. (2020). Small-scale biomass gasification systems for power generation (<200 kW class): A review. Renewable and Sustainable Energy Reviews, 117, 109486. https://doi.org/10.1016/j.rser.2019.109486 DOI: https://doi.org/10.1016/j.rser.2019.109486

Solarte-Toro, J. C., González-Aguirre, J. A., Poveda Giraldo, J. A., & Cardona Alzate, C. A. (2021). Thermochemical processing of woody biomass: A review focused on energydriven applications and catalytic upgrading. Renewable and Sustainable Energy Reviews, 136. https://doi.org/10.1016/j. rser.2020.110376 DOI: https://doi.org/10.1016/j.rser.2020.110376

Song, C., Zhang, C., Zhang, S., Lin, H., Kim, Y., Ramakrishnan, M., Du, Y., Zhang, Y., Zheng, H., Barceló, Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A., Poliakoff, M. (2012). Valorization of biomass: Deriving more value from waste. Science, 337, 695-699. https://doi. org/10.1126/science.1218930 DOI: https://doi.org/10.1126/science.1218930

van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy. https://doi.org/10.1016/j. biombioe.2011.06.023 DOI: https://doi.org/10.1016/j.biombioe.2011.06.023

Watson, J., Wang, T., Si, B., Chen, W. T., Aierzhati, A., & Zhang, Y. (2020). Valorization of hydrothermal liquefaction aqueous phase: Pathways towards commercial viability. Progress in Energy and Combustion Science, 77, 100819. https://doi.org/10.1016/j. pecs.2019.100819 DOI: https://doi.org/10.1016/j.pecs.2019.100819

Yang, C., Wang, S., Yang, J., Xu, D., Li, Y., Li, J., Zhang, Y. (2020). Hydrothermal liquefaction and gasification of biomass and model compounds: A review. Green Chemistry, 22, 8210-8232. https://doi.org/10.1039/ D0GC02802A DOI: https://doi.org/10.1039/D0GC02802A

Yang, J., (Sophia)He, Q., Yang, L. (2019). A review on hydrothermal co-liquefaction of biomass. Applied Energy, 250, 926-945. https://doi. org/10.1016/j.apenergy.2019.05.033 DOI: https://doi.org/10.1016/j.apenergy.2019.05.033

Yang, M., Liu, D., Baral, N. R., Lin, C. -Y., Simmons, B. A., Gladden, J. M., Eudes, A., Scown, C. D. (2022). Comparing in planta accumulation with microbial routes to set targets for a cost-competitive bioeconomy. Proceedings of the National Academy of Sciences, 119, e2122309119. https://doi. org/10.1073/pnas.2122309119 DOI: https://doi.org/10.1073/pnas.2122309119

Zhao, X., Zhou, H., Sikarwar, V. S., Zhao, M., Park, A. H. A., Fennell, P. S., Shen, L., Fan, L. S., (2017). Biomass-based chemical looping technologies: The good, the bad and the future. Energy and Environmental Science, 10, 18851910. https://doi.org/10.1039/c6ee03718f DOI: https://doi.org/10.1039/C6EE03718F

Downloads

Published

2024-07-30

How to Cite

HOSSEIN SHAHBEIK, & WANXI PENG. (2024). THE SIGNIFICANCE OF BIOMASS IN ACHIEVING A GLOBAL BIOECONOMY. Planetary Sustainability, 2(1). https://doi.org/10.46754/ps.2024.01.004