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HIGHLIGHTS GRAPHICAL ABSTRACT

• Dry Valleys mirror Martian and ancient Earth 
conditions.

• Features Palaeozoic granitoids, Beacon 
Supergroup, and Jurassic basalts.

• ASTER technology enables precise lithological 
mapping.

• BR, PCA, and OIF identified key rock types 
(sandstone, granite, basalt).

• Minimises environmental impact while 
advancing geological research.
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The Dry Valleys of South Victoria Land in 
Antarctica, one of the most extreme deserts on 
Earth, offers an unparalleled analogue for Martian 
landscapes and a vital record of Earth’s geological 
history. Characterised by a cold, arid climate 
and minimal atmospheric moisture, the region’s 
ancient rock formations, including early Palaeozoic 
granitoid plutons, Devonian to Triassic sedimentary 
rocks of the Beacon Supergroup, and Jurassic basalt 
flows, provide insights into Earth’s evolution. The 
logistical challenges of traditional field-based 
geological surveys in this remote and fragile 
environment emphasise the need for sustainable 
methods of exploration. This study leverages 
Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) remote sensing 
technology to achieve high-resolution lithological 
mapping to minimise the environmental impact of 
exploring these fragile and remote environments. 
Image processing techniques such as Band Ratio 
(BR) analysis, Principal Component Analysis
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(PCA), and the Optimal Index Factor (OIF) were 
employed to enhance the spectral characteristics 
of the lithologies. These approaches facilitated the 
identification of key lithological units, including 
sandstone, granite, gneisses, and basaltic flows, 
and the production of an accurate lithological map. 
By integrating remote sensing with sustainable 
scientific practices, this research paper has the 
potential to advance planetary sustainability by 
making critical geological discoveries without 
regard to extreme environments.

 © UMT Press

Introduction

The Dry Valleys of South Victoria Land in 
Antarctica are among the most extreme deserts 
on Earth, characterised by a cold, arid, and harsh 
climate often compared to conditions on Mars. 
Minimal atmospheric moisture and challenging 
logistic conditions make this region difficult 
to explore. From a geological perspective, it 
represents one of the most ancient and complex 
landscapes, offering valuable insights into 
Earth’s history (Marchant et al., 1993a; Denton 
et al., 1993; Summerfield et al., 1999; Schafer 
et al., 1999). The Dry Valleys are part of the 
Transantarctic Mountains, a natural boundary 
extending across Antarctica from the Ross Sea 
to the Weddell Sea. This mountain chain shields 
the more ancient region of East Antarctica from 
the much younger folded mountains of West 
Antarctica. The current topography of the region 
is attributed to tertiary block faulting, with 
portions of West Antarctica subsiding below 
sea level, while sections of East Antarctica have 
been lifted by more than 4,000 metres.

While contemporary geological studies uses 
a combination of geological, geophysical, and 
geochemical methods to infer geological events, 
direct observation through drilling remains 
essential. However, drilling in Antarctica poses 
significant challenges due to the ice, snow, and 

permafrost, which is exacerbated by the lack of 
roads and infrastructure. These severe climate 
conditions complicate operational and logistical 
matters, resulting in cost overruns, prolonged 
delays, and a host of unique challenges (Talalay, 
2016). Advanced remote sensing technologies 
provide an effective solution by enabling 
detailed geological investigations of such 
inaccessible regions and require only minimal 
physical intervention. Remote sensing not only 
facilitates geological research but also aligns 
with global efforts to reduce the environmental 
impact of human activity in fragile ecosystems 
(Nemmour-Zekiri & Oulebsir, 2020). 

Remote sensing, particularly multispectral 
sensors, have proven to be exceptionally 
effective at identifying and mapping geological 
features by analysing the spectral responses 
across visible, shortwave and the thermal infrared 
regions of the electromagnetic spectrum (Feng 
et al., 2020). High-resolution multispectral 
datasets such as those provided by the Advanced 
Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) remote sensing platform, 
offer precise spatial information regarding the 
location and morphology of surface features 
while capturing essential spectroscopic data 
(Shao et al., 2019). ASTER’s enhanced spectral 
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capabilities in the Shortwave Infrared (SWIR) 
range, compared to the sensors on Landsat-7, 
make it a powerful tool for understanding 
geological processes in extreme and, or remote 
regions (Tommaso & Rubinstein, 2007).

Although no prior remote sensing studies 
have specifically focused on lithological 
mapping in the Dry Valleys, ASTER data has 
proven highly effective for mineral exploration 
and mapping in other regions. Over the past 
two decades, ASTER’s ability and reliability 
with regard to geological applications has been 
amply demonstrated (Islam et al., 2024). This 
study uses ASTER datasets to produce accurate 
lithological maps and analyse the spectral 
signatures of various rock formations in the 
Dry Valleys. These findings not only provide 
a foundation for understanding the geology of 
this unique region but also contribute to broader 
planetary sustainability efforts by demonstrating 
how advanced technologies can support research 
in extreme environments.

The harsh environmental conditions of 
South Victoria Land in Antarctica pose distinct 
challenges for geological assessments. This 
research uses ASTER remote sensing technology 
and integrates image processing methods 
like Band Ratio (BR), Principal Component 
Analysis (PCA), and the Optimal Index Factor 
(OIF) to effectively identify different rock types. 
The main goal of the research is to determine 
the feasibility of Multispectral Imaging Remote 
Sensing (MSI-RS) in extreme conditions for 
environmentally responsible geological surveys. 
This method acts as a terrestrial comparison 
for planetary science, especially with regard to 
Martian terrain, providing valuable knowledge 
for upcoming extra-terrestrial exploration.

Geology of the Study Area

The Dry Valleys form part of the Transantarctic 
Mountains, a prominent natural boundary 
spanning Antarctica from the Ross Sea to the 
Weddell Sea (Figure 1). This mountain range 
divides Antarctica into the far older region 
of East Antarctica and the younger folded 
mountains of West Antarctica. The region’s 
current topography is shaped by tertiary block 
faulting, resulting in portions of West Antarctica 
subsiding below sea level, while areas of 
East Antarctica have been lifted to elevations 
exceeding 4,000 m.

The geology of the Dry Valleys includes a 
basement complex of Lower Palaeozoic igneous 
and metamorphic rocks, which are overlain 
by Devonian to Triassic sedimentary rocks 
of the Beacon Supergroup. These formations 
are intruded by Jurassic Ferrar dolerites and 
Cenozoic basaltic flows (Barrett et al., 1992; 
Marchant et al., 1993a). Higher elevations 
feature Sirius Group diamicts, which have played 
a central role in debates about the formation and 
timing of the Dry Valleys and the behaviour of 
the EAIS (Webb et al., 1984).

Granitoid plutons of varying compositions 
intrude the older metasediments of the Koettlitz 
Group. The lithological units include sandstones, 
siltstones, granites, granodiorites, gneisses, 
Jurassic diabase sills, basalt flows, and recent 
basaltic rocks (Figure 1). These units are crucial 
to understand the region’s geological history.
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Figure 1: Geographical location and geology map of study area
Source: Authors

Materials and Methods

This research utilised a single ASTER Level 
1T scene covering the southern part of the 
Dry Valleys. The ASTER is a highly regarded 
multispectral remote sensing instrument 
known for its exceptional spatial, spectral, 

and radiometric resolution. It consists of 
three subsystems that cover the Visible and 
Near-infrared (VNIR) ,0.52 to 0.86 μm; 15 
m resolution, SWIR, 1.6 to 2.43 μm; 30 m 
resolution, and Thermal Infrared (TIR) (8.125 
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Figure 2: (a) ASTER spectral response channels superimposed over the spectral response of the Earth’s 
atmosphere and (b) comparison of ASTER spectral response channels with those of Landsat 7. Notably, the 
increased spectral resolution of the SWIR and TIR bands, compared to Landsat TM, gives ASTER greater 

flexibility in responding to active volcanic features. A low gain state command for the SWIR channels 
enhances ASTER’s dynamic range relative to TM (Wright et al., 1999)

Advanced image processing techniques, 
such as Band Ratios (BR), Principal Component 
Analysis (PCA), Optimum Index Factor 
(OIF), and Spectral Information Divergence 
(SID) classification, further enhance the 
capabilities of ASTER. BR highlights specific 
mineralogical features by combining spectral 
bands, while PCA, applied to multispectral 

bands can significantly improve image quality 
by maximising spectral contrast. OIF optimises 
band combinations for maximum contrast, 
and SID classification quantitatively assesses 
spectral similarity by measuring divergence 
in spectral signatures, making it particularly 
effective for distinguishing between materials 
with subtle spectral differences (Chang, 1999). 

to 11.65 μm; 90 m resolution) regions of the 
electromagnetic spectrum (Figure 2). With a 
swath width of 60 km and scene coverage of 
60 × 60 km², ASTER is particularly suited for 

regional geological mapping, using its spectral 
characteristics to support mineral exploration 
and lithological mapping (Abrams et al., 2019). 
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These methodologies, when combined with 
ASTER’s high-resolution spectral data, make 
it a powerful tool for understanding the surface 
composition of the Earth, especially in arid and 
geologically complex regions.

Band Ratio (BR)  

The band ratio is one of the most effective 
and commonly employed image processing 
techniques, which enhances the distinctions 
in colour composition of surface materials to 
detect irregularities while reducing the effect of 
lighting variations on the entire image (Sabins 
et al., 1999). The band ratio is a quantitative 
method used to enhance the differences in 
spectra between several bands. This image 
processing technique exploits the changes 
in reflectivity within the spectral signature, 
involving the division of the Digital Number 
(DN) from one band by the DN values from 
another band in a scene consisting of multiple 
spectral bands (Githenya et al., 2019).

Principal Component Analysis (PCA)

PCA is a mathematical method used for 
dimensionality reduction, particularly effective 
in addressing correlated information common 
in remote sensing data. It falls under a category 
of multidimensional descriptive techniques 
referred to as factorial methods. (El Atillah et al., 
2019) Furthermore, it is used to collect data on 
characteristics in order to improve the targeted 
information within the image. This process 
involves converting a group of interconnected 
variables into multiple independent and 
uncorrelated linear variables by identifying the 
key axes in the original data that account for 
the greatest variation. These linear variables 
carry significant information relating to the 
spectral characteristics expected from specific 
bands within the VNIR and SWIR zones. 
This transformation is achieved through an 
orthogonal transformation known as Principal 

Components (PCs) (Singh & Harrison et al., 
1985; Crosta et al., 2003; Gupta et al. 2013). 

However, while PCA is notably effective 
at reducing the dimensionality of satellite 
data by compressing multispectral data 
sets into principal component bands, it also 
separates noise components by mitigating 
irradiance effects, removing data redundancy 
and calculating a new coordinate system. 
Additionally, it primarily preserves the vital 
information contained within the images. The 
application of PCA in image data involves three 
principal steps: (1) Assessing variance from 
the data matrix, (2) deriving eigen-values and 
eigen-vectors from the variance matrix, and (3) 
linearly transforming the image data using the 
coefficients of the eigenvectors. (Khaleghi et al., 
2020).  PCA is commonly used for lithological 
mapping by leveraging spectral bands from 
remote sensing devices, as this approach can 
consistently distinguish 90% geological features 
and mineral exploration outcomes effectively 
90% of the time, as evidenced by numerous 
studies (Crosta et al., 2003; Pour et al., 2011; 
Sheikhrahimi et al., 2019; Zoheir et al., 2019). 
As a result, the derived components may 
provide more reliable interpretations compared 
to the original images (Tangestani et al., 2008; 
Pour et al., 2017a; Pour, 2018). 

Optimum Index Factor (OIF)

The Optimum Index Factor (OIF) is used to 
select the best colour composites for analysing 
satellite images. OIF is a statistical method first 
introduced by Chavez et al., 1982 and later 
refined to identify the most suitable bands. This 
method involves a statistical evaluation of all 
possible combinations of three bands to create 
a Red, Green and Blue (RGB) image (Equation 
1). OIF values are computed to find the most 
advantageous band combinations (Cengiz et al., 
2006) and to rank the three bands according to 
the amount of information each combination 
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provides (Beaudemin & Fung, 2001). The 
potential for RGB visualisation is determined by 
the overall variance and the correlation between 
the various bands (Jensen, 1996). 

                           (1)

Where Stdi is the standard deviation of band i, 
Stdj is the standard deviation of band j, Stdk is 
the standard deviation of band k, Corri,j is the 
correlation coefficient between bands i and j, 
Corrj,k is the correlation coefficient between 
bands i and j, Corri,k is the correlation coefficient 
between bands i and j, Such that:

Standard Deviation (Std):    (2)

Where N is the number of points and  is the 
mean.

Correlation Coefficient:    (3)

Where σx and σy represent the standard 
deviation of x and y, respectively.

Spectral Information Divergence (SID) 
Classification

SID is a probabilistic approach for spectral 
classification that pairs pixels with reference 
spectra using a divergence metric (Kumar et 
al., 2020). This method assesses the disparity 
between probability distributions by employing 
spectral information from two-pixel vectors, 
with values calculated from zero to a predefined 
threshold for its probability.

Results and Discussion

Band Ratios Composite Image

Image enhancement techniques aim to increase 
the informational value of an image. Band 
ratios, a type of spectral enhancement technique, 
express the ratio of digital numbers across two or 
more distinct bands. A key challenge is selecting 
the best combinations of ratios that capture 
the full range of information within the scene. 
The Optimum Index Factor (OIF) was used to 
address this. The OIF evaluates all potential 
combinations based on the total variance of 
each band and their level of correlation. High 
OIF values indicate bands rich in information. 
This research paper applied the OIF method to 
determine the optimal R-G-B ratio combination 
that contains the most spectral information 
for distinguishing various rocks. This study 
calculated the normalised reflectance values for 
all 72 potential ASTER band ratios, comprising 
four VNIR and five SWIR bands. A standard 
deviation was used to assess the variance in 
each band ratio image, while correlation was 
analysed through a correlation matrix for each 
image.

The statistical analysis of the various bands 
revealed that the ASTER band combination 
ratios of 3/1, 3/2, and 6/1 had the highest OIF 
values (Table 1), effectively differentiating 
granitoids and sandstone within the research 
area (Figure 3).

Table 1: OIF values for band ratios

OIF Values for Band Ratios
1. 3/1 3/2 6/1 139.32
2. 3/1 3/2 6/4 137.44
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The Optimum Index Factor (OIF) method 
was used to identify the most efficient band 
combination for further analysis. The OIF 
technique helped select the best bands based on 
their contributions to the total spectral variance 
and classification performance. In this case, PCA 
1, PCA 2, and PCA 6 were selected based on the 
OIF assessment (Table 2), which indicated that 

Figure 3: ASTER image map derived from the band ratio combination of 3/1, 3/2, and 6/1 as an RGB colour 
composite for a selected subset scene covering the southern part of the Dry Valleys Source: Authors.

these components had high OIF values and were 
well-suited for distinguishing lithological units 
using spectral data (Figure 4).

Table 2: OIF values for PCA

OIF Values for PCA
1. PCA 1 PCA 2 PCA 6 19804.35
2. PCA 2 PCA 3 PCA 7 15791.40
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A SID classification is a remote sensing 
method used to assess how distinct different 
classes (such as lithological units) are based 
on their spectral signatures. It employs 
the concept of divergence to measure the 
variance between spectral classes, which can 
enhance the effectiveness of classification 
algorithms by identifying which classes are 
more or less distinguishable in the spectral 
domain. SID measures the difference between 
two spectral signatures using the Kullback-

Figure 4:  ASTER image map derived from the PCA 1, PCA 2, and PCA 6 components as an RGB colour 
composite for a selected spatial scene covering the southern part of the Dry Valleys Source: Authors.

Leibler divergence, which quantifies how one 
probability distribution diverges from a second, 
expected probability distribution.

In this study, the reference spectra of 
granitoids and sandstone endmember minerals 
for applying SID were selected from spectra 
resampled to the response functions of ASTER’s 
nine bands, which covered the VNIR and SWIR 
bands. Granitoid rocks are well discriminated 
using SID in the ASTER image of the study area 
(Figure 5).
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The combination of methods like Band 
Ratio (BR) analysis, Principal Component 
Analysis (PCA), and Optimal Index Factor 
(OIF) optimisation increases the efficiency and 
precision of rock type identification, ensuring 
that the resulting maps meet both scientific and 
industrial standards for mineral exploration.

From an ecological perspective, such 
method significantly decreases the necessity for 

extensive on-site field research, which typically 
requires considerable logistical support, 
including transportation and infrastructure. By 
reducing direct human intervention in delicate 
ecosystems, this technique limits ecological 
disruptions and helps preserve the unspoiled 
nature of locations like Antarctica. Additionally, 
this approach aligns with global sustainability 
objectives by decreasing the carbon footprint 

Figure 5: Spectral Information Divergence (SID) classification of the ASTER image (yellow representing 
granitoids and blue representing sandstone) for a selected spatial scene covering the southern part of the Dry 

Valleys
Source: Authors.
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associated with traditional field surveys such as 
those arising from vehicle use, fuel consumption, 
and heavy machinery deployment.

Conclusions

This research effectively showcases the value of 
ASTER remote sensing and image processing 
methods such as Band Ratio (BR), Principal 
Component Analysis (PCA), and Optimal Index 
Factor (OIF), the use of Spectral Information 
Divergence (SID) effectively demonstrated 
its potential to distinguish between granitoids 
and sandstone lithological units using 
ASTER imagery. The SID method, based on 
Kullback-Leibler divergence, highlighted the 
distinctiveness of these lithological categories 
by evaluating their spectral signatures, 
thereby improving classification accuracy. The 
integration with the Optimum Index Factor 
(OIF) technique strengthened the analysis by 
identifying the most effective band combinations 
for lithological differentiation. Specifically, the 
PCA components (PCA 1, PCA 2, and PCA 
6) exhibited high OIF values, indicating their 
importance for spectral analysis. Additionally, 
the evaluation of band ratios based on OIF 
identified the most informative combinations 
such as 3/1, 3/2, and 6/1, which were successful 
in differentiating between granitoids and 
sandstone. This study underscores the critical 
role of advanced spectral enhancement 
techniques and statistical methods like SID and 
OIF in improving lithological classification 
through remote sensing, providing valuable 
insights for future geological studies and 
remote sensing applications. Using satellite 
data, this study successfully addresses the 
challenges posed by inaccessibility, severe 
weather conditions, and logistical limitations, 
facilitating detailed mapping of rock types 
including sandstone, granite, and basaltic 
flows. The approach emphasises the capability 
of remote sensing as a powerful instrument 
for geological investigations in isolated areas, 

where traditional field studies are not viable. 

The results not only improve our 
comprehension of the tectonic and mineralogical 
framework of South Victoria Land but also open 
opportunities to apply such techniques to other 
remote and less-explored regions worldwide. 
Subsequent studies could enhance these 
methods by incorporating hyperspectral data and 
advanced machine learning techniques to better 
lithological classification and adaptability to 
various geological environments. Additionally, 
this method offers a dependable model for 
examining planetary surfaces, like Mars, where 
remote sensing would be the primary means of 
exploration.
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