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HIGHLIGHT GRAPHICAL ABSTRACT

•	 The use of phospholipids in 
aquafeed is increasing and 
gaining wider consideration.

•	 Dietary phospholipids enhance 
digestion and absorption of other 
lipids in aquaculture species.

•	 Dietary phospholipids are vital 
for growth and good health of 
aquaculture stocks.

•	 Hydrolysed phospholipids are 
more efficient in aquatic feed 
utilisation and growth compared 
with normal phospholipids.
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Fish oil (FO) is the main source of lipids in aquafeed, but its use has 
become very unsustainable due to over-exploitation, scarcity and 
high cost. Plant oil has been proposed as an alternative to FO, but 
they are less digestible and not rich in fatty acids. In addition, larval 
and juvenile fish are unable to synthesise sufficient phospholipids 
(PLs) for their metabolic need. Hence, the necessity to supplement 
PLs in their diets. This review describes the application and 
beneficial impact of dietary PLs in aquafeed. PLs are an essential 
component of aquafeed as they supply energy for metabolic activities 
and enhance digestion and absorption of other dietary lipids. Plant-
based PLs such as soy lecithin serve as an emulsifier that helps 
lipid catabolism by facilitating enzymatic hydrolysis in the fish’s 
digestive system, besides improving nutrient absorption, growth 
and health. Studies on farm animals have confirmed the positive 
effects of PLs. Although the literature on aquafeed application is 
limited, to growth and health of farmed fish and crustaceans. The 
use of PLs in aquaculture is set to increase as both feed producers

UMT PRESS
Planetary Sustainability
Journal Homepage: https://planetsust.umt.edu.my
eISSN: 3009-0105
DOI: http://doi.org/10.46754/ps.2024.01.002



Enyo Jonathan Ukwela et al.    

Planetary Sustainability Volume 2 Number 1, January 2024: 5-24

6

(Xie, 2019). There are two classes of PLs: 
Phosphoglycerides (where their alcohol is 
glycerol) and sphingolipids (where their alcohol 
is sphingosine) (El-Bacha & Torres, 2016). 
The most important and abundant of these PLs 
discovered in fish is phosphatidylcholine. Each 
phospholipid class is likely to have different 
effects on different fish species due to their 
unique roles (Kanazawa, 1993). The degree of 
unsaturation, differences in polar head group 
characteristics, and fatty alkyl-chain length are 
all factors affecting the structural variations of 
PLs from different sources (Sun et al., 2018). 

Figure 1: Microstructural figure of a phospholipid molecule comprising a hydrophilic head that contains 
choline or phosphate with glycerol that forms a phosphatidylcholine and hydrophobic tails. This image was 

adapted from Bruning (2009)

and farmers seek to maximise production through efficient feed 
utilisation and ensure sustainability in delivering quality fish to 
consumers.

                                                     © UMT Press 

Introduction 
Lipids containing phosphorus are called 
phospholipids (PLs) (Tocher et al., 2008) and 
they are amphiphilic; comprising a polar head 
and lipophilic tail, which has a constituent of 
two fatty acids, a glycerol or an amino-alcohol 
sphingosine backbone esterified at the “one” and 
“two” positions, and a phosphate group esterified 
at the “three” position. They all lead to the 
production of molecules such as ethanolamine, 
choline and inositol (Van Hoogevest & 
Wendel, 2014; Zhou & Rakariyatham, 2019) 
(Figure 1). PLs are natural components of 
cell membranes in all living organisms which 
contain emulsifying and antioxidant properties 
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Dietary PLs may be derived from 
natural sources (plants and animals) or 
synthetic sources. Natural PLs are preferred 
in the formulation of diets because they are 
sustainable, environmentally friendly and 
cheap (Van Hoogevest & Wendel, 2014). 
Fish like herring, anchovies, salmon, krill, 
mackerel and sardines are rich in PLs, 
comprising highly polyunsaturated fatty acids 
(PUFA) like eicosapentaenoic acid (EPA) and 
docosahexaenoic acid (DHA), which are both 
easily digested (Khan et al., 2018a; Sun et 
al., 2018). Soybean oil, corn oil, linseed oil, 
rapeseed oil and palm oil are some examples 
of plant-based phospholipid sources, which 
serve as potential alternatives to aquatic sources 
in fish feed production (Rana et al., 2009; 
Gunstone, 2011). Plant-based meals are a great 
alternative to marine-sourced meals, but they 
contain a lesser proportion of PLs (Sargent et 
al., 2002). It has been shown that the effects 
of marine PLs are more potent than plants in 
fish meals (Jaxion-Harm, 2021). For instance, 
gilthead seabream (Sparus aurata) larvae will 
experience better growth when fed with marine 
PLs than soy lecithin (Saleh et al., 2015). 
However, despite the superior effects of marine 
PLs, its scarcity and unsustainability due to the 
impacts of climate change pose a great concern 
on its utilisation.

Dietary PLs play key roles in (i) minimising 
the leaching of water-soluble nutrients from feed, 
thereby improving diet quality (Coutteau et al., 
1997); (ii) helping to improve the emulsification 
of dietary lipids and aid their absorption in the 
gut (Koven et al., 1993); (iii) providing nutrients 
such as essential fatty acids (EFAs) for energy 
and phosphorus for growth, reproduction, 
bone formation and synthesis of nucleic acid; 
and, (iv) carrying of fat-soluble vitamins and 
carotenoid pigments that play an important role 
in maintaining normal growth and health of 
aquaculture stocks (Tocher, 1995; Bell & Koppe 
2010). PLs form the outer layer of lipoproteins 
responsible for transporting the absorbed fatty 
acids from the intestines to the bloodstream, 
and throughout the body (Chapman et al., 1978; 
Jaxion-Harm, 2021).

The lack of PLs in fish feed can cause 
aquaculture fish stocks to suffer impaired 
lipid transportation from the intestines or liver 
to other tissues, which results in steatosis 
(Caballero et al., 2004; Morais et al., 2006). 
Therefore, the inclusion of PLs in fish diet 
is an important step (Tocher et al., 2008). 
Depending on lipid content, feed formulation 
and analytical methods used, PLs may account 
for between 5% and 25% of the total lipid in 
standard commercial fish feed (Johnson & 
Barnett, 2003). The larvae of marine fish species 
require a higher content of PLs in their feed. For 
example, the Japanese flounder (Paralichthys 
olivaceus) needs a 7% PLs content in its feed, 
whereas the red bream (Pagrus major) and 
knife jaw (Oplegnathus fasciatus) need 5% to 
7%.  In comparison, the larvae of the freshwater 
species Cyprinus carpio need 2% PLs only in its 
feed, while Plecoglossus altivelus needs 3% to 
5% (Torcher et al., 2008). The requirement for 
PLs in adult fish has not been well established 
(Olsen et al.,1999), probably due to their ability 
to synthesise PLs from dietary precursors, and 
are unlikely to benefit from supplementation 
(La, 1990). Many studies have demonstrated 
that PLs may be supplemented in the diet of 
marine and freshwater fish species at a level of 
2% to 4% to improve their growth (Tocher et al., 
2008; Saleh et al., 2013). 

Based on the literature, PLs are crucial for 
aquatic animal growth, but their effect is species- 
and stage-specific. To our best knowledge, 
there is limited literature to summarise this 
information. Therefore, this review aims to 
improve our understanding of how PLs enhance 
growth performance in aquaculture. This review 
also describes the effects of PLs on specific fish 
species and their research gaps.

Common Phospholipids (PLs) in Aquafeed
PLs in aquafeed predominantly comprise 
lecithin and hydrated lecithin, which can either 
be of animal or plant origin. The mechanism of 
uptake, breakdown and utilisation of these PLs 
by cultured fish stocks is similar to mammals 
(Tocher, 2003) (Figure 2), and the resultant 
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enriched fish with high EPA and DHA for human 
consumption (Figure 3). For example, studies 
have shown that PLs are the most efficient way 
to provide sea bass (Dicentrarchus labrax) with 
dietary EPA and DHA (Gisbert et al., 2005). 

Fish are more likely to divert short and medium-
chain fatty acids for energy, while long-chain 
unsaturated fatty acids (UFA), such as EPA and 
DHA, are selectively reserved in their body 
(Khan et al., 2018; Campos et al., 2019).

Figure 2: Source and utilisation of dietary phospholipids in fish
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Figure 3: Role of dietary phospholipids and effects on cultured fish

The impact of dietary PLs on a range of 
fish biometric, physiological and biochemical 
parameters and responses has also been 
investigated. They include growth, survival, 
biochemical composition, lipid, fatty acid and 
amino acid metabolism, antioxidant capacity, 
digestive enzyme activities, histology, stress 
resistance, gene expression, serum biochemistry, 
reproductive performance, intestinal microbiota, 
immune capacity, digestibility, bone development 
and cholesterol mobilisation (Table 1). 

Lecithin 
Lecithin is a glycerol phospholipid sourced 
from animals, plants or microbes, with varying 
amounts of sphingosyl PLs, glycolipids, 
triglycerides and fatty acids. There are over 40 
varying formulations of lecithin, ranging from 
naturally sourced oil extracts to synthetic and 
purified ones (Wendel, 2014). Lecithin from 
soybean constitutes the most abundant source 
of oil-seed (Van Nieuwenhuyzen, 2015). As a 

Effects of Dietary PLs 
Figure 4 (a) shows a heightened interest in 
phospholipid use in aquaculture dietary research 
between 2020 and 2023, with a 19% study 
contribution compared with between 1979 
and 1985, which showed a 4% contribution. 
Furthermore, due to new discoveries on the 
significant impacts of PLs on fish dietary needs, 
studies have covered about 66 aquaculture 
species (fish, crustaceans and mollusks) across 
25 countries [Figure 4 (b)], of which China 
(27%) emerged as the lead contributor, followed 
by Japan (12%), Iran (10%), USA (9%) and 
Belgium (7%). Among the species investigated, 
shrimp (22%) was given the highest attention, 
followed by crabs (11%), sea bream (11%) and 
trout (5%). A total of 74% of research involved 
marine species, while freshwater and estuary 
species were at 24% and 2%, respectively 
[Figure 4 (c)]. This focus on marine species 
was probably due to the established fact that 
the larvae of marine fish species required higher 
PLs compared with freshwater species. 
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Figure 4: (a) Percentage of aquaculture dietary studies focusing on PLs between 1979 and 2023; (b) top 
contributing countries in aquaculture dietary studies focusing on PLs; and (c) type of aquaculture species 

used in PLs diet studies

(a) (b)

(c)
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mykiss) (0, 3, 6 and 9 g/kg of diet; 1, 2, and 3 g/
kg of diet) (Taghavizadeh et al., 2020; Adhami 
et al., 2021a), hybrid tilapia (O. aureus ♂ × O. 
niloticus ♀) (Li et al., 2010), crucian carp 
(Carassius auratus gibelio) (0.1%) (Li et al., 
2010b), turbot (Scophthalmus Maximus) (0, 
1000, 2500, 4000, 5500 mg/kg of diet; 0.1, 0.25, 
and 0.5%) (Li et al., 2019; Xu et al., 2022), 
common carp (Cyprinus carpio Var. Jian) ( Wang 
et al., 2009), tiger prawns (Penaeus monodon) 
(Khan et al., 2018a; 2018b) and kuruma prawns 
(Penaeus japonicus Bate) (1.5%) (Kontara et al., 
1998). 

Emulsification of Lipids 
The emulsification of lipids and formation 
of micelles exposes more lipid molecules for 
contact with lipase (Adhami et al., 2021a). 
Emulsifiers increase the surface area of lipids 
and promote the translation of fatty acids to 
form micelles, a step that is very important to 
improve lipid digestion and absorption (Kim 
et al., 2018). Some properties of phospholipid 
emulsion include the formation of tiny droplets 
when the molecules are homogenised at high 
pressure, which may lack stability in pH values 
lower than 3 at high ionic strength and also 
likely to disintegrate at elevated temperatures 
(McClements & Gumus, 2016). 

The micelle size is one of the most 
important factors determining the absorption of 
lipids and lipophilic substances. For example, 
the absorption of cholesterol by HL micelles, 
which are smaller in size, is 15 times greater than 
that of lecithin micelles which have larger size 
(Reynier et al., 1985). The micelles produced 
will ultimately increase the bioavailability of 
nutrients (Li et al., 2019; Liu et al., 2020).

Studies have shown that other PLs like 
HL that may act as emulsifiers have greater 
efficiency in improving the utilisation of dietary 
lipids in livestock (Hosseini et al., 2018; 
Mohammadigheisar et al., 2018). As HL has 
higher emulsifying abilities than lecithin (Liu et 
al., 2020; Taghavizadeh et al., 2020), the micelles 
formed by HL are smaller and more stable than 
those of other PLs and bile salt (Adams, 1996). 
For instance, HL has been reported to have a 

phospholipid source, lecithin has the ability to 
improve stress resistance, growth performance 
and survival in cultured marine and freshwater 
fish species, as well as crustaceans (Jamali et al., 
2019). Several studies have reported the benefits 
of dietary lecithin at varying rates of inclusion 
in aquafeeds. They include the Nile tilapia 
(Oreochromis niloticus) (0.3, 0.6 and 0.9 g/
kg of diet) (El‐Sayed et al., 2021), sea urchins 
(Lytechinus variegatus) (1, 2.5, 4, 5.2, 6.4, 7.6, 
and 8.8%) (Gibbs et al., 2009), hybrid grouper 
(E. fuscoguttatus♀× E. lanceolatus♂) (1.87, 
3.61, 5.53, 7.25 and 9.69%) (Huang et al., 2021), 
stellate sturgeon (Acipenser stellatus) (0.3, 
0.9, 1.6, 2.7, 3.9, 5.3 and 5.4%) (Jafari et al., 
2021), gilthead sea bream (Sparus aurata L.) 
(0.53, 1 and 2%) (Kokou et al., 2021), shrimp 
(Litopenaeus vannamei) (0, 10, 20, 40 and 80 g/
kg of diet) (Niu et al., 2011), amberjack (Seriola 
dumerili) (14, 37 and 54 g/kg of diet) (Uyan et al., 
2009), largemouth bass (Micropterus salmoides) 
(1.49, 3.21, 5.34, 7.20 and 9.11%) (Wang et al., 
2022), and large yellow croaker (Larmichthys 
crocea) (26.0, 38.5, 57.2, 69.5 and 85.1 g/kg of 
diet) (Zhao et al., 2013).

Hydrolysed Lecithin 
The elimination of a fatty acid by phospholipase 
in lecithin hydrolysis produces an end-product 
known as hydrolysed lecithin (HL), which 
is more hydrophilic and easily absorbed by 
aquaculture stocks (Joshi, 2010; Li et al., 2019). 
Although enzymes in fish can convert PLs into 
HL, they are unable to naturally synthesise 
sufficient PLs, hence, the need to supplement 
HL in their diets for growth promotion (Adhami 
et al., 2021 a). HL molecules have very solid 
surface-active properties due to the two distinctly 
different hydrophilic and lipophilic areas. The 
emulsifying ability of HL on dietary lipids is 
about five times higher than other PLs in general 
(Zhang, 2007), and this may partly explain their 
effects on lipid metabolism (Li et al., 2019).

Studies on the use of HL and levels of 
inclusion in aquafeed are few, and those available 
have focused on channel catfish (Ictalurus 
punctatus) (0, 125, 250, 375 and 500 mg/kg) 
(Liu et al., 2020), rainbow trout (Oncorhynchus 
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critical micelle concentration (CMC) of 0.02 
to 0.2 mmL−1, which is 20 to 200 times more 
potent than bile (CMC = 4 mmL−1) and lecithin 
(CMC = 0.3 to 2 mmL−1) (Longmuir, 2002). Li 
et al. (2019) showed that HL was an emulsifier 
with five times higher capacity than lecithin, 
facilitating the breakdown of fats and the 
formation of micelles with fatty acids. 

On the other hand, an increase in surface 
area between nutrients and intestinal villi 
will improve feed conversion and growth. 
Taghavizadeh et al. (2020) reported that 2 g/kg 
dietary HL increase the villi height to 442.87 ± 
8.89 µm in O. mykiss compared with 336.62 ± 
0.63 µm in the control group. The same result 
was recorded in the broiler with jejunum villi 
height of HL fed groups, which at 1,072.95 µm, 
was greater than that of the positive 847.56 µm 
and negative 917.28 µm controls (Boontiam 
et al., 2017). Another experiment showed that 
the jejunum villi height of broilers fed with 
HL was 1034.7 µm compared with those fed 
with a high-energy diet (848.3 µm) and low-
energy diet (918.3 µm) (Hosseini et al., 2018). 
In I. punctatus, no significant differences in 
villi height and muscular layer thickness were 
found across all treatments (Liu et al., 2019). 
Adult Nile tilapias (O. niloticus) fed with 0.3 g 
of lecithin per kg of feed resulted in a higher 
midgut villi length (637.83 ± 23.9 µm) than that 
recorded in the control group (428.80 ± 38.8 µm) 
(El‐Sayed et al., 2021). Hence, it can be deduced 
that the increased villi height observed in the 
aforementioned fish species enhances their feed 
conversion and growth performance upon being 
fed dietary PLs. A common trend observed in 
previous studies was a linear increase of villi 
height with an increased level of dietary PLs up 
to the optimum, but after a decline effect was 
reported. Therefore, it is necessary to keep to 
the optimum inclusion range when formulating 
species-specific diets. 

Digestibility and Absorption of Nutrients 
When the water-in-oil emulsion is stabilised, it 
allows the formation of micelles by fatty acids, 
thereby improving lipid metabolism, nutrient 

digestibility, and growth performance of the 
animals (Zampiga et al., 2016; Zhao et al., 
2017). Efficient digestion and absorption only 
occur when consumed lipids are emulsified 
and integrated into micelles within intestinal 
digestion (Maldonado-Valderrama et al., 2011). 
Based on an enzyme activity assay after PLs 
ingestion, the digestive ability and absorption 
performance in fish have improved (Perez-
Casanova et al., 2006; Liu et al., 2020). When 
the activity of digestive enzymes involved in 
the digestion of various substances in diets was 
increased, this indicated an improvement in the 
fish’s ability to extract nutrients from the diet 
(Furné et al., 2005). Li et al. (2019) reported that 
juvenile turbots (S. maximus) fed with dietary 
HL had a significant increase in enzyme activity 
leading to efficient lipid utilisation. 

Intestinal enzyme activities of protease, 
trypsin, lipase and amylase in adult Nile tilapia 
(O. niloticus) fed with dietary lecithin (0.3 g/kg 
diet) have shown significantly enhanced with an 
increase of dietary lecithin levels, but declined at 
inclusion levels of 0.6 and 0.9 g/kg. Maximum 
enzyme activity was reported at approximately 
0.44 to 0.46 g/kg for tilapia (El‐Sayed et al., 
2021). The liver and intestinal activities of 
protease and lipase in M. salmoides fed dietary 
HL (1 g/kg) were reported to be significantly 
higher (Lu et al., 2022). Whereas an increase 
of dietary marine phospholipid and soybean 
lecithin in the diet of S. aurata larvae resulted 
in enhanced assimilation of polyunsaturated 
fatty acids, n-3 highly unsaturated fatty acids 
(predominantly 20:5n-3) and n-6 fatty acids 
(predominantly 18:2n-6) (Saleh et al., 2015). 
Dietary soybean lecithin levels at 0.9 to 3.9% for 
juvenile stellate sturgeon (A. stellatus) enhanced 
the activities of gastric pepsin and pancreatic 
trypsin, chymotrypsin, bile salt-activated lipase 
and a-amylase enzymes (Jafari et al., 2021). The 
inclusion of dietary PLs in low-FM diets for 
juvenile S. aurata enhanced feed utilisation (86 
to 87.5%) (Kokou et al., 2021).

This growth and feeding improvement were 
associated with high gastric and intestinal lipase, 
sodium-potassium adenosine triphosphatase 
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freshwater and marine aquaculture species with 
the inclusion of PLs in their diet (Tocher et al., 
2008). PLs-fed stocks have been observed to 
have enhanced nutrient absorption, effective 
transportation of fat-soluble vitamins and well-
regulated hormones, eicosanoids and vitamin D 
synthesis (Liu et al., 2020). 

For example, the study on South American 
catfish (Pseudoplatystoma fasciatum surubim) 
juveniles fed with four semi-purified diets 
(casein–gelatin diet, linseed and olive oil, cod 
liver oil and soybean lecithin) for eight weeks 
found that those fed with soybean lecithin 
(1512 ± 502 g) experienced a significant growth 
improvement compared with other diets (Arslan 
et al., 2008). The specific growth rate for O. 
niloticus fed with lecithin 0.3g/kg feed (1.71 ± 
0.11% per day) was significantly higher than the 
control fish (1.26 ± 0.03% per day) (El-Sayed 
et al., 2021). Juvenile S. parus aurata fed with 
dietary PLs from krill and soy lecithin at three 
different levels of inclusion (0.53%, 1.0% and 
2.0%) demonstrated a significantly enhanced 
final weight gain improvement in krill (49.6 
± 1.7 g) and soy lecithin (49.5 ± 1.7 g) at a 
higher level supplement (Kokou et al., 2021). 
For juvenile Stellate sturgeon (A. stellatus), the 
inclusion of 3.9% soy lecithin could increase 
the growth performance (Jafari et al., 2021). 
Whereas for hybrid grouper larvae (Epinephelus 
fuscoguttatus × E. lanceolatus), a 9.1% of 
phospholipid inclusion in their diet could 
improve weight gain and specific growth rate 
(Huang et al., 2021). 

Similarly, phospholipid inclusion also 
improves serum biochemical parameters, and 
immune-related gene expression for juvenile 
amberjacks (Seriola dumerili) (Uyan et al., 
2009), juvenile largemouth seabass (M. 
salmoides) (Lu et al., 2022; Wang et al., 2022), 
sea bream larvae (S. auratus) (Seiliez et al., 
2006), Atlantic salmon (Salmo salar) (Jaxion-
Harm, 2021), yellow croakers (Larmichthys 
crocea) (Zhao et al., 2013), rainbow trout (O. 
mykiss) (Taghavizadeh et al., 2020; Adhami et 
al., 2021b), crucian carps (Carassais auratus 
gibelio) (Li et al., 2010b), hybrid tilapia (O. 

(Na+/K+-ATPase) and alkaline phosphatase 
(AKP) activities (Liu et al., 2020). An increasing 
trend in lipase activities after adding PLs to 
dietary fat powder has also been reported in 
channel catfish I. punctatus (Adhami et al., 
2021a). In the crucian carp (Carassais auratus 
gibelio), groups fed 0.1% HL had a significantly 
higher apparent digestibility coefficient (ADC) 
of nutrients (Li et al., 2010b). Supplementation 
of fat powder as an alternative lipid source in the 
diet of O. mykiss resulted in a reduction in body 
fat and fat digestibility by 60.01 ± 1.33%, but 
ingestion of 9 g/kg HL increased digestibility 
to 65.46 ± 0.93%. This indicated the ability of 
O. mykiss to digest fat powder and minimise its 
effects using HL (Adhami et al., 2021a). Another 
study reported that dietary HL significantly 
increased ADC of fatty acids in P. monodon 
compared with those fed with dietary lecithin 
(Khan et al., 2018b). The use of HL in the diet 
of P. monodon might be considered relevant due 
to the short gut passage time through improved 
digestibility and transport of fatty acids in plant-
based diets (Khan et al., 2018a). 

In addition, improved efficiency of micelle 
formation by HL was reported to improve 
digestibility in broilers (Melegy et al., 2010; 
Bingkun et al., 2011). Compared with a soy-
lecithin diet, HL diet achieved better absorption 
of lipids and fat-soluble substances in the gut of 
P. monodon (Khan et al., 2018a). Improvement 
in lipid digestion has been observed in fish fed 
S. salar diets containing soybean lecithin (Craig 
& Gatlin, 1997; Kasper & Brown, 2003). Their 
studies found PLs in the gastrointestinal mucosa, 
with reduced non-polar lipid droplets while 
playing the role of lipid emulsifier, thereby 
improving digestion and absorption of dietary 
fatty acids (Jamali et al., 2019). Therefore, the 
optimal dietary PL inclusion in aquafeed will 
vary from species to species and hence, the need 
to tailor the formulation to meet each species’ 
requirement. 

Application of PLs in Aquaculture Species 
Literature has well documented the significant 
improvements in the growth performance of 
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aureus ♂× O. niloticus ♀) (Li et al., 2010a) and 
turbots (Scophthalmus maximus) (Li et al., 2019; 
Xu et al., 2022). In addition, supplementation of 
soy lecithin at an optimal level of 3.56 g/100 g 
in the diet of early juvenile milkfish (Chanos 
chanos) also improved their survival, growth 
and carcass composition (Coutteau, et al., 1997; 
Balito-Liboon et al., 2018).

 The positive impact is not only reported in 
teleost, but also in invertebrates like the Pacific 
white shrimp (Litopeneaus vannamei) (Hu et 
al., 2011; Niu et al., 2011b). Even, juvenile sea 
urchins (Lytechinus variegatus) fed with a 6% 
phospholipid diet were found to have improved 
gonadal maturation and fecundity (Gibbs et al., 
2009). Tiger prawns (P. monodon) fed with PLs 
not only showed improved growth and survival, 
but also increased muscle essential fatty-acid 
composition, especially EPA and DHA (Khan 
et al., 2018a). Other shrimp species such as 
kuruma shrimp (Penaeus japonicus) fed with 
PLs were found to undergo frequent larvae 
metamorphoses and development at 1.40% to 
1.45% per day (Kontara et al., 1998; Khan et al., 
2018b). The use of 10 g/kg soy lecithin promoted 
a five-fold increment in growth (Li et al., 2014) 
and 60% improvement in feed conversion ratio 
(Hou et al., 2016) in blue swimming crab (P. 
trituberculatus), but excessive levels have been 
reported to impair physiological processes related 
to growth and tissue composition (Coutteau, et 
al., 1997; Balito-Liboon et al., 2018). 

Correlating all the data proves that the 
inclusion of PLs in aquafeed can significantly 
enhance the growth of aquaculture stocks. 
Nevertheless, others showed that higher 
inclusion levels might either result in no effect 
or retardation of growth performance (Coutteau, 
et al., 1997; Balito-Liboon et al., 2018). Hence, 
it is paramount to ensure that the application of 
dietary PLs in aquafeed is designed to meets the 
optimum inclusion levels for a specific species, 
besides considering the purity of the PLs into 
consideration. 

Health Improvement 
Fatty acids and other lipids may affect the health 
of fish stocks in many ways; including, but not 
limited to their effects on growth, reproduction, 
behaviour, vision, osmoregulation, membrane 
fluidity for thermal adaptation and immune 
response (Arts & Kohler 2009). Dietary PLs and 
unsaturated fatty acids increases the permeability 
and fluidity of cell membranes resulting in 
improved immunity (Balfry & Higgs, 2001). 
As reported in previously studies, juvenile gilt-
head seabream (Sparus aurata) fed with PLs in 
low-fish meal diet were able to undergo better 
growth and improved liver steatosis (Kokou 
et al., 2021). A total antioxidant capacity 
colourimetric (T-AOC) assay reportedly 
detected a significant increase in antioxidant 
activities, such as superoxide dismutase (SOD) 
and catalase (CAT), in larval hybrid grouper 
(Epinephelus fuscoguttatus × E. lanceolatus) 
(Huang et al., 2021). Activities of CAT and 
SOD in juvenile stellate sturgeon (A. stellatus) 
fed with soy lecithin also increased linearly in 
proportion with the lecithin quantity, while fat 
accumulation in the liver was minimised (Jafari 
et al., 2021). 

High dietary PLs inclusion at 69.5-85.1 g/
kg may help enhance the stress tolerance of L. 
crocea larvae (Weirich & Reigh, 2001; Zhao 
et al., 2013;) and improve its gut microbiota 
(Honjoh et al., 1967; Li et al., 2022). In O. 
mykiss, stocks fed with 2 g/kg dietary HL 
showed an increase of non-specific (lysozyme, 
C3 and C4) and specific immunoglobulin (IgM) 
reactions (Taghavizadeh et al., 2020). Lysozyme 
is commonly used as a critical indicator of innate 
immune function in fish (Adel et al., 2017; Xiao 
et al., 2019). In addition, respiratory burst 
activity, phagocytic activity and phenol-oxidase 
levels were significantly enhanced in tilapia (O. 
niloticus) (El-Sayed et al., 2021). 

The influence of HL on lipid deposition 
has been reported in channel catfish (Liu et 
al., 2020), rainbow trout (Taghavizadeh et al., 
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