A REVIEW ON MACHINE LEARNING AND DEEP LEARNING TECHNIQUES FOR TEXTUAL EMOTION ANALYSIS ON SOCIAL NETWORKS

Authors

  • RAHMAT ULLAH KHAN Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
  • ARIFAH CHE ALHADI Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
  • NORAIDA ALI Faculty of Computer Science and Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

DOI:

https://doi.org/10.46754/jmsi.2024.10.008

Keywords:

Emotion detection, Natural language processing, Machine learning, Deep learning

Abstract

In recent times emotion detection has achieved significant attention in the field of Natural Language Processing (NLP) due to the abundance of text data available on different social network platforms like Twitter, LinkedIn and Reddit. This paper presents a thorough review of existing emotion detection techniques on text analysis. The methodology involves a comparative analysis of different machine
learning and deep learning models, approaches and datasets utilised for emotion detection. The article discusses the limitations and challenges of traditional methods and delves into the theoretical foundations of machine learning and deep learning techniques such as SVM, CNN and BERT. By exploring the current state-of-the-art in emotion detection from social networks, this review aims to provide insight for researchers to advance the field of emotion detection.

References

Murthy, A. R., & Kumar, K. M. A. (2021). A review of different approaches for detecting emotion from text. IOP Conference Series Materials Science and Engineering, 1110(1), 012009. https://doi.org/10.1088/1757-899x/1110/1/012009

Chatterjee, A., Gupta, U., Chinnakotla, M. K., Srikanth, R., Galley, M., & Agrawal, P. (2018). Understanding emotions in text using deep learning and big data. Computers in Human Behavior, 93, 309-317. https://doi.org/10.1016/j.chb.2018.12.029

Peng, S., Cao, L., Zhou, Y., Ouyang, Z., Yang, A., Li, X., Jia, W., & Yu, S. (2021). A survey on deep learning for textual emotion analysis in social networks. Digital Communications and Networks, 8(5), 745-762. https://doi.org/10.1016/j.dcan.2021.10.003

Ahire, V., & Borse, S. (2021). Emotion detection from social media using machine learning techniques: A survey. In Advances in intelligent systems and computing (pp. 83-92). https://doi.org/10.1007/978-981-16-2008-9_8

Alnuaim, A. A., Zakariah, M., Shukla, P. K., Alhadlaq, A., Hatamleh, W. A., Tarazi, H., Sureshbabu, R., & Ratna, R. (2022). Human-Computer interaction for recognizing speech emotions using multilayer perceptron classifier. Journal of Healthcare Engineering, 2022, 1-12. https://doi.org/10.1155/2022/6005446

Buechel, S., & Hahn, U. (2017). Readers vs. writers vs. texts: Coping with different perspectives of text understanding in emotion annotation. In Proceedings of the 11th Linguistic Annotation Workshop, pages 1-12, Valencia, Spain. Association for Computational Linguistics. https://doi.org/10.18653/v1/w17-0801

Thiab, A., Alawneh, L., & Al-Smadi, M. (2023). Contextual emotion detection using ensemble deep learning. Computer Speech & Language, 86, 101604. https://doi.org/10.1016/j.csl.2023.101604

Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3-4), 169-200. https://doi.org/10.1080/02699939208411068

Mohammad, S., Bravo-Marquez, F., Salameh, M., & Kiritchenko, S. (2018). SemEval-2018 Task 1: Affect in Tweets. In Proceedings of the 12th International Workshop on Semantic Evaluation, pp. 1-17. https://doi.org/10.18653/v1/s18-1001

Motwani, A., Shukla, P. K., & Pawar, M. (2021). Novel framework based on deep learning and cloud analytics for smart patient monitoring and recommendation (SPMR). Journal of Ambient Intelligence and Humanized Computing, 14(5), 5565-5580. https://doi.

org/10.1007/s12652-020-02790-6

Nagarajan, S. M., & Gandhi, U. D. (2018). Classifying streaming of Twitter data based on sentiment analysis using hybridization. In Neural Computing and Applications, 31(5), 1425-1433. https://doi.org/10.1007/s00521-018-3476-3

Ahuja, R., Chug, A., Kohli, S., Gupta, S., & Ahuja, P. (2019). The impact of features extraction on the sentiment analysis. Procedia Computer Science, 152, 341-348. https://doi.org/10.1016/j.procs.2019.05.008

Shivhare, S. N. (2012). Emotion detection from text documents. International Journal of Data Mining & Knowledge Management Process, vol. 4, no. 6, p. 51. https://doi.org/10.5121/csit.2012.2237

Rahman, R., Islam, T., Ahmed, Md. H. (2017). Detecting emotion from text and emoticon. London Journal of Research in Computer Science and Technology, 17(3), 9-13. https://journalspress.com/LJRCST_Volume17/315_Detecting-Emotion-from-Text-and-Emoticon.pdf

Asghar, M. Z., Khan, A., Bibi, A., Kundi, F. M., & Ahmad, H. (2017). Sentence-level emotion detection framework using rule-based classification. Cognitive Computation, 9(6), 868-894. https://doi.org/10.1007/s12559-017-9503-3

De Bruyne, L., De Clercq, O., & Hoste, V. (2018). LT3 at SemEval-2018 Task 1: A classifier chain to detect emotions in tweets. In Proceedings of the 12th International Workshop on Semantic Evaluation, pp. 123-127, New Orleans, Louisiana. Association for Computational Linguistics. https://doi.org/10.18653/v1/s18-1016

Chatterjee, A., Narahari, K. N., Joshi, M., & Agrawal, P. (2019). SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text. In Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 39-48, Minneapolis, Minnesota, USA. Association for Computational Linguistics.

Ragheb, W., Azé, J., Bringay, S., & Servajean, M. (2019, June 14). Attention-based modeling for emotion detection and classification in textual conversations. arXiv.org. http://arxiv.org/abs/1906.07020

Hasan, M., Rundensteiner, E., & Agu, E. (2018). Automatic emotion detection in text streams by analyzing Twitter data. International Journal of Data Science and Analytics, 7(1), 35-51. https://doi.org/10.1007/s41060-018-0096-z

Nasir, A. F. A., Nee, E. S., Choong, C. S., Ghani, A. S. A., Majeed, A. P. P. A., Adam, A., & Furqan, M. (2020). Text-based emotion prediction system using machine learning approach. IOP Conference Series Materials Science and Engineering, 769(1), 012022. https://doi.org/10.1088/1757-899x/769/1/012022

Batbaatar, E., Li, M., & Ryu, K. H. (2019b). Semantic-Emotion neural network for emotion recognition from text. IEEE Access, 7, 111866-111878. https://doi.org/10.1109/access.2019.2934529

Haryadi, D., & Putra, G. K. (2019). Emotion Detection in Text using Nested Long Short-Term Memory. International Journal of Advanced Computer Science and Applications, 10(6), 351-357. https://doi.org/10.14569/ijacsa.2019.0100645

Ahmad, Z., Jindal, R., Ekbal, A., & Bhattachharyya, P. (2019). Borrow from rich cousin: transfer learning for emotion detection using cross lingual embedding. Expert Systems with Applications, 139, 112851. https://doi.org/10.1016/j.eswa.2019.112851

Akhtar, M. S., Ekbal, A. & Cambria, E. (2020). How Intense Are You? Predicting Intensities of Emotions and Sentiments using Stacked Ensemble [Application Notes]. IEEE Computational Intelligence Magazine, vol. 15, no. 1, pp. 64-75. https://doi.org/10.1109/

MCI.2019.2954667

Ishiwatari, T., Yasuda, Y., Miyazaki, T., & Goto, J. (2020). Relation-aware Graph Attention Networks with Relational Position Encodings for Emotion Recognition in Conversations. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7360–7370. https://doi.org/10.18653/v1/2020.emnlp-main.597

Bharti, S. K., Varadhaganapathy, S., Gupta, R. K., Shukla, P. K., Bouye, M., Hingaa, S. K., & Mahmud, A. (2022). Text-based emotion recognition using deep learning approach. Computer Intelligence Neuroscience, 2022, Article 2645381. https://doi.org/10.1155/2022/2645381

Ray, P., & Chakrabarti, A. (2020). A mixed approach of deep learning method and rule-based method to improve aspect level sentiment analysis. Applied Computing and Informatics, vol. 18(1-2), 163-178. https://doi.org/10.1016/j.aci.2019.02.002

Downloads

Published

13-10-2024