REVIEW ON STOCHASTIC HYBRIDISATION OF FEEDFORWARD NEURAL NETWORK IN STOCK MARKET
DOI:
https://doi.org/10.46754/jmsi.2024.06.006Keywords:
Multilayer Perceptron, Hybridized Neural Network, Stochastic Neural Network, Stochastic Time Effective Neural Network, Forecasting Financial Time Series ModelAbstract
The stock market is an example of a stochastic environment in the real world. So, obtaining accurate forecasting models of the stock market can be challenging due to its complex characteristics (noisy environment), which result in uncertainty. Although machine learning models have been widely applied to forecast the market, it fails to capture the presence of stochasticity in it. As a result, a few studies had proposed a hybridization of Multilayer Perceptron and stochastic processes. Hence, this review paper aims to provide a systematic review of these hybridized models, which have been obtained from the scientific databases Scopus and Web of Science. Finally, it was found out that only eight studies had been conducted to forecast the stock market with Stochastic Neural Network (SNN), and all of them concluded that it has better accuracy than the deterministic model. Thus, the development of SNN is worth exploring in the future as there are rooms to explore cross-disciplinary between neural networks and stochastic processes to improve forecasting accuracy.
References
Johnson, N. F., Jefferies, P., & Hui, P. M. (2003). Financial market complexity. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198526650.002.0003 DOI: https://doi.org/10.1093/acprof:oso/9780198526650.001.0001
Giles, C. L., Lawrence, S., & Tsoi, A. C. (2001). Noisy time series prediction using recurrent neural networks and grammatical inference. Machine Learning, 44(1), 161-183. https://doi.org/10.1023/A:1010884214864. DOI: https://doi.org/10.1023/A:1010884214864
Ji, X., Wang, J., & Yan, Z. (2021). A stock price prediction method based on deep learning technology. International Journal of Crowd Science, 5(1), 55-72. https://doi.org/10.1108/IJCS-05-2020-0012 DOI: https://doi.org/10.1108/IJCS-05-2020-0012
Kumar, D., Sarangi, P. K., & Verma, R. (2022). A systematic review of stock market prediction using machine learning and statistical techniques. Materials Today Proceedings, 49(8), 3187-3191. https://doi.org/10.1016/j.matpr.2020.11.399 DOI: https://doi.org/10.1016/j.matpr.2020.11.399
Maruddani, D. A. I., & Trimono. (2018). Modeling stock prices in a portfolio using multidimensional geometric brownian motion. Journal of Physics: Conference Series, 1025(1), 012122. https://doi.org/10.1088/1742-6596/1025/1/012122 DOI: https://doi.org/10.1088/1742-6596/1025/1/012122
Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259-268. https://doi.org/10.1016/j.eswa.2014.07.040 DOI: https://doi.org/10.1016/j.eswa.2014.07.040
Islam, M. R., & Nguyen, N. (2020). Comparison of financial models for stock price prediction. Journal of Risk Financial Management, 13(8), 181. https://doi.org/10.3390/jrfm13080181 DOI: https://doi.org/10.3390/jrfm13080181
Mallikarjuna, M., & Rao, R. P. (2019). Evaluation of forecasting methods from selected stock market returns. Financial Innovation, 5(1), 1-16. https://doi.org/10.1186/s40854-019-0157-x DOI: https://doi.org/10.1186/s40854-019-0157-x
Setyawati, B. R., Creese, R. C., & Jaraiedi, M. (2003). Neural networks for univariate and multivariate time series forecasting keywords. IIE Annual Conferences Proceeding (pp. 1-6).
Petchamé, J., Nebot, À., & Alquézar, R. (2012). Quantitative and qualitative approaches for stock movement prediction. Frontiers in Artificial Intelligence and Applications, 248, 233-24. http://dx.doi.org/10.3233/978-1-61499-139-7-233
Atsalakis, G. S., & Valavanis, K. P. (2009). Surveying stock market forecasting techniques - Part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932-5941, 2009, https://doi.org/10.1016/j.eswa.2008.07.006 DOI: https://doi.org/10.1016/j.eswa.2008.07.006
Wijaya, Y. B., Kom, S., & Napitupulu, T. A. (2010). Stock price prediction: Comparison of Arima and artificial neural network methods - An Indonesia stock’s case. 2010 Second International Conference on Advances in Computing, Control, and Telecommunication Technologies, Jakarta, Indonesia, 2010 (pp. 176-179). https://doi.org/10.1109/ACT.2010.45 DOI: https://doi.org/10.1109/ACT.2010.45
Mostafa, M. M. (2010). Forecasting stock exchange movements using neural networks: Empirical evidence from Kuwait. Expert Systems with Applications, 37(9), 6302-6309. https://doi.org/10.1016/j.eswa.2010.02.091 DOI: https://doi.org/10.1016/j.eswa.2010.02.091
Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). Using artificial neural network models in stock market index prediction. Expert Systems with Applications, 38(8), 10389-10397. https://doi.org/10.1016/j.eswa.2011.02.068 DOI: https://doi.org/10.1016/j.eswa.2011.02.068
Kumar, D. A., & Murugan, S. (2013). Performance analysis of Indian stock market index using neural network time series model. 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering, Salem, India, 2013 (pp. 72-78). https://doi.org/10.1109/ICPRIME.2013.6496450 DOI: https://doi.org/10.1109/ICPRIME.2013.6496450
Hyup Roh, T. (2007). Forecasting the volatility of stock price index. Expert Systems with Applications, 33(4), 916-922. https://doi.org/10.1016/J.ESWA.2006.08.001 DOI: https://doi.org/10.1016/j.eswa.2006.08.001
Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and artificial neural networks models for stock price prediction. Journal of Applied Mathematics, 2014, 614342. https://doi.org/10.1155/2014/614342 DOI: https://doi.org/10.1155/2014/614342
Ashish Gajanan Lahane (2008). Financial forecasting: Comparison of ARIMA, FFNN and SVR [Report No. 05329R01]. Accessed by September 24, 2023. [Online] from https://www.yumpu.com/en/document/view/23569116/financial-forecasting-comparison-of-arima-ffnnand-svr
Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2018). NSE stock market prediction using deep-learning models. Procedia Computer Science, 132, 1351-1362. https://doi.org/10.1016/j.procs.2018.05.050 DOI: https://doi.org/10.1016/j.procs.2018.05.050
Kumbure, M. M., Lohrmann, C., Luukka, P., & Porras, J. (2022). Machine learning techniques and data for stock market forecasting: A literature review. Expert Systems with Applications, 197, 116659. https://doi.org/10.1016/j.eswa.2022.116659 DOI: https://doi.org/10.1016/j.eswa.2022.116659
Orimoloye, L. O., Sung, M. C., Ma, T., & Johnson, J. E. V. (2020). Comparing the effectiveness of deep feedforward neural networks and shallow architectures for predicting stock price indices. Expert Systems with Applications, 139, 112828. https://doi.org/10.1016/J.ESWA.2019.112828. DOI: https://doi.org/10.1016/j.eswa.2019.112828
Kurani, A., Doshi, P., Vakharia, A., & Shah, M. (2021). A comprehensive comparative study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on stock forecasting. Annals of Data Science, 10, 183-208. https://doi.org/10.1007/S40745-021-00344-X DOI: https://doi.org/10.1007/s40745-021-00344-x
Ling, H., Samarasinghe, S., & Kulasiri, D. (2016). Stochastic neural networks for modelling random processes from observed data. In Shanmuganathan, S., Samarasinghe, S. (Eds.), Artificial neural network modelling. Studies in Computational Intelligence (Vol. 628, pp. 83-107). https://doi.org/10.1007/978-3-319-28495-8_5 DOI: https://doi.org/10.1007/978-3-319-28495-8_5
North Carolina State University (n.d.). Deterministic vs stochastic models (PowerPoint slides). Accessed by September 11, 2022. [Online] from https://www4.stat.ncsu.edu/~gross/BIO560 webpage/slides/Jan102013.pdf
Hendikawati, P., Subanar, Abdurakhman, & Tarno (2020). A survey of time series forecasting from stochastic method to soft computing. Journal of Physics: Conference Series, 1613(1), 012019. https://doi.org/10.1088/1742-6596/1613/1/012019 DOI: https://doi.org/10.1088/1742-6596/1613/1/012019
Liao Z., & Wang, J. (2010). Forecasting model of global stock index by stochastic time effective neural network. Expert Systems with Applications, 37(1), 834-841. https://doi.org/10.1016/J.ESWA.2009.05.086 DOI: https://doi.org/10.1016/j.eswa.2009.05.086
Wang, J., Pan, H., & Liu, F. (2012). Forecasting crude oil price and stock price by jump stochastic time effective neural network model. Journal of Applied Mathematics, 2012, 646475, https://doi.org/10.1155/2012/646475 DOI: https://doi.org/10.1155/2012/646475
Wang J., & Wang, J. (2015). Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks. Neurocomputing, 156, 68-78, May 2015, https://doi.org/10.1016/J.NEUCOM.2014.12.084 DOI: https://doi.org/10.1016/j.neucom.2014.12.084
Mo, H. & Wang, J. (2018). Return scaling cross-correlation forecasting by stochastic time strength neural network in financial market dynamics. Soft Computing, 22(9), 3097-3109. https://doi.org/10.1007/s00500-017-2564-0 DOI: https://doi.org/10.1007/s00500-017-2564-0
Jay, P., Kalariya, V., Parmar, P., Tanwar, S., Kumar, N., & Alazab, M. (2020). Stochastic neural networks for cryptocurrency price prediction. IEEE Access, 8, 82804-82818. https://doi.org/10.1109/ACCESS.2020.2990659 DOI: https://doi.org/10.1109/ACCESS.2020.2990659
Wang, J., Pan, H., Wang, Y., & Niu, H. (2015). Complex system analysis on voter stochastic system and jump time effective neural network of stock market. International Journal of Computational Intelligence Systems, 8(4), 787-795. https://doi.org/10.1080/18756891.2015.1061397 DOI: https://doi.org/10.1080/18756891.2015.1061397
Mo H., & Wang, J. (2013). Volatility degree forecasting of stock market by stochastic time strength neural network. Mathematical Problems in Engineering, 2013, 436795, https://doi.org/10.1155/2013/436795 DOI: https://doi.org/10.1155/2013/436795
Wang, J., & Wang, J. (2017). Forecasting stochastic neural network based on financial empirical mode decomposition. Neural Networks, 90, 8-20. https://doi.org/10.1016/J.NEUNET.2017.03.004 DOI: https://doi.org/10.1016/j.neunet.2017.03.004
Parker, L. E. (2006). Notes on multilayer, feedforward neural networks. (CS494/594: Projects in Machine Learning). Accessed by September 11, 2022. [Online] from http://web.eecs.utk.edu/~leparker/Courses/CS594-spring06/handouts/Neural-net-notes.pdf
Ghorbani, M. A., Deo, R. C., Karimi, V., Kashani, M. H., & Ghorbani, S. (2019). Design and implementation of a hybrid MLP-GSA model with multi-layer perceptron-gravitational search algorithm for monthly lake water level forecasting. Stochastic Environmental Research and Risk Assessment, 33(1), 125-147. https://doi.org/10.1007/s00477-018-1630-1 DOI: https://doi.org/10.1007/s00477-018-1630-1
Widegren, P. (2017). Deep learning-based forecasting of financial assets. KTH Royal Institution Technology. Accessed by Sep. 11, 2022. [Online] from https://www.math.kth.se/matstat/seminarier/reports/M-exjobb17/170609b.pdf
Sathyanarayana, S. (2014). A gentle introduction to backpropagation. Numeric Insight, 7, 1-15. Accessed by September 11, 2022. [Online] from https://www.researchgate.net/publication/266396438_A_Gentle_Introduction_to_Backpropagation
Svozil, D., Kvasnička, V., & Pospíchal, J. (1997). Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1), 43-62. https://doi.org/10.1016/S0169-7439(97)00061-0 DOI: https://doi.org/10.1016/S0169-7439(97)00061-0
Bustos, O., & Pomares-Quimbaya, A. (2020). Stock market movement forecast: A Systematic review. Expert Systems with Applications, 156, 113464. https://doi.org/10.1016/j.eswa.2020.113464 DOI: https://doi.org/10.1016/j.eswa.2020.113464
Vincent A. M. P., & Salleh, H. (2021). An investigation into the performance of the multilayer perceptron architecture of deep learning in forecasting stock. Universiti Malaysia Terengganu Journal of Undergraduate Research, 3(2), 61-68. https://doi.org/10.46754/umtjur.v3i2.205 DOI: https://doi.org/10.46754/umtjur.2021.04.006
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Mathematical Sciences and Informatics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.