EFFECT OF MARANGONI CONVECTION ON UNSTEADY SQUEEZED FLOW OF WATER BASE CNTS NANOFLUID IN THE PRESENCE OF MAGNETIC FIELD AND VARIABLE THERMAL CONDUCTIVITY OVER A STRETCHING SURFACE

Authors

  • ALI REHMAN Special Interest Group for Modelling and Data Analytics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • ZABIDIN SALLEH Special Interest Group for Modelling and Data Analytics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • USMAN ALI Department of Mathematics, Islami Collage University Peshawar Pakistan

DOI:

https://doi.org/10.46754/jmsi.2022.12.004

Abstract

This research paper explains the effect of Marangoni convection on unsteady squeezing flow of water base CNTs for both MWCNT and SWCNT in the presence of magnetic field and variable thermal conductivity over a stretching surface. By using the similarity transformation, the partial differential equation is converted to nonlinear fourth order ordinary differential equations. The analytical method, namely Optimal Homotopic Analysis Method used to find the analytical solution of the nonlinear problem which analyze the problem. The result of important parameters for both velocity and temperature profiles are plotted and discussed. The BVPh 2.0 package is used to obtain the convergence of the problem up to 25 iteration. The skin friction coefficient and Nusselt number is explained in table form.       

References

Chen, C. H. (2007). Marangoni effects on forced convection of power-law liquids in a thin film over a stretching surface. Physics Letters A, 370(1), 51-57. https://doi.org/10.1016/j.physleta.2007.05.024

Rehman, A., Gul, T., Salleh, Z., Mukhtar, S., Hussain, F., Nisar, K. S., & Kumam, P. (2019). Effect of the Marangoni convection in the unsteady thin film spray of CNT nanofluids. Processes, 7(6), 392. http://dx.doi.org/10.3390/pr7060392

Kuzma, D. C. (1968). Fluid inertia effects in squeeze films. Applied Scientific Research, 18, 15–20. https://doi.org/10.1007/BF00382330

Gupta, P. S., & Gupta, A. S. (1977). Squeezing flow between parallel plates. Wear, 45, 177–185.

Wang, C. Y., & Watson, L. T. (1979). Squeezing of a viscous fluid between elliptic plates. Applied Scientific Research, 35, 195–207. https://doi.org/10.1007/BF00382705

Bhattacharyya, S. & Pal, A. (1997). Unsteady MHD squeezing flow between two parallel rotating discs. Mechanics Research Communications, 24(6), 615–623.

Xu, C., Yuan, L., Xu. Y., & W. Hang. ((2010). Squeeze flow of interstitial Herschel-Bulkley fluid between two rigid spheres. Particuology, 8(4), 360–364. https://doi.org/10.1016/j.partic.2009.07.008

Ganji, D. D., Abbasi, M., Rahimi, J., Gholami, M., & Rahimipetroudi, I. (2014). On the MHD squeeze flow between two parallel disks with suction or injection via HAM and HPM. Frontiers of Mechanical Engineering, 9(3) (2014), 270–280.

Grubka, L. J., & Bobba, K. M. (1985). Heat transfer characteristics of a continuous, stretching surface with variable temperature. Journal Heat Transfer, 107, 248–250.

Dutta, B. K. (1988). Heat transfer from a stretching sheet in hydromagnetic flow. Wärme-und Stoffübertragung, 23(1), 35-37. https://doi.org/10.1007/BF01460746

Rudraswamy, N. G., Ganesh Kumar, K., Gireesha, B. J., & Gorla, R. S. R. (2017). Combined effect of joule heating and viscous dissipation on MHD three dimensional flow of a Jeffrey nanofluid. Journal of Nanofluids, 6(2), 300–310.

Rudraswamy, N. G., & Gireesha, B. J. (2014). Influence of chemical reaction and thermal radiation on MHD boundary layer flow and heat transfer of a nanofluid over an exponentially stretching sheet. Journal of Applied Mathematics and Physics, 2(2), 24-32.

Kuiry, D. R., & Bahadur, S. (2015). Steady MHD flow of viscous fluid between two parallel porous plates with heat transfer in an inclined magnetic field. Journal of Scientific Research, 7(3), 21–31. https://doi.org/10.3329/jsr.v7i3.22574

Rudraswamy, N. G., Ganesh Kumar, K., Gireesha, B. J., & Gorla, R. S. R. (2016). Soret and Dufour effects in three-dimensional flow of Jeffery nanofluid in the presence of nonlinear thermal radiation. Journal of Nanoengineering and Nanomanufacturing, 6(4), 278–287.

Kumar, K. G., Rudraswamy, N. G., Gireesha, B. J., & Krishnamurthy, M. R. (2017). Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nanfluid over a stretching sheet in the presence of Joule heating. Nonlinear Engineering, 6(3). http://dx.doi.org/10.1515/nleng-2017-0014

Chaim, T. C. (1998). Heat transfer in a fluid with variable thermal conductivity over stretching sheet. Acta Mechanica, 129(1-2), 63–72.

Sharma, P. R., & Singh, G. (2009). Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet. Journal of Applied Fluid Mechanics, 2(1), 13–21.

Salahuddin, T., Malik, M. Y., Hussain A., Bilal, S, & Awais, M. (2016). Combined effects of variable thermal conductivity and MHD flow on pseudoplastic fluid over a stretching cylinder by using Keller box method. Information Sciences Letters, 5(1), 11-19.

Malik, M. Y., Hussain, A., Salahuddin, T., Awais, M., & Bilal, S. (2016). Magnetohydrodynamic flow of Sisko fluid over a stretching cylinder with variable thermal conductivity: A numerical study. AIP Advances, 6, 025316. https://doi.org/10.1063/1.4942476

Rehman, A., Salleh, Z., Gul, T., & Zaheer, Z. (2019). The Impact of Viscous Dissipation on the thin film unsteady flow of GO-EG/GO-W Nanofluids. Mathematics, 7, 653. https://doi.org/10.3390/math7070653

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. https://doi.org/10.1038/354056a0

Ajayan, P., lijima, S. (1993). Capillarity-induced filling of carbon nanotubes. Nature, 361, 333-334. https://doi.org/10.1038/361333a0

To, C. W. S. (2006). Bending and shear moduli of single–walled carbon nanotubes. Finite Elements in Analysis and Design, 42(5), 404–413. https://doi.org/10.1016/j.finel.2005.08.004

Dresselhaus, M. S., Dresselhaus, G., & Saito, R. (1995). Physics of carbon nanotubes. Carbon, 33(7), 883–891.

Hone, J. (2004). Carbon nanotubes: Thermal properties. Dekker Encyclopedia of Nanoscience and Nanotechnology, 7, 603–610.

Haq. R. U., Nadeem, S., Khan, Z. H., & Noor, N. F. M. (2015). Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B Condensed Matter, 457, 40–47. https://doi.org/10.1016/j.physb.2014.09.031

Khan, W. A., Khan, Z. H., & Rahi, M. (2014). Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Applied Nanoscience, 4, 633–641. https://doi.org/10.1007/s13204-013-0242-9

Kumar, K. G., Gireesha, B. J., Krishanamurthy, M. R., & Rudraswamy, N. G. (2017). An unsteady squeezed flow of a tangent hyperbolic fluid over a sensor surface in the presence of variable thermal conductivity. Results in Physics, 7, 3031-3036. https://doi.org/10.1016/j.

rinp.2017.08.021

Liao, S. J. (2010). An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2003‒2016.

Published

31-12-2022