MAPPINGS AND DECOMPOSITIONS OF (μ, σ)-CONTINUITY ON μ-NEARLY COMPACT SPACES

Authors

  • Faten Nabila Rashdi Special Interest Group on Modelling and Data Analytics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Malaysia
  • Zabidin Salleh Special Interest Group on Modelling and Data Analytics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Malaysia

DOI:

https://doi.org/10.46754/jmsi.2022.12.002

Keywords:

Generalized topological spaces, \mu-nearly compact, (\mu,\sigma)-continuity, (\mu,\sigma)-\delta-continuity, (\mu,\sigma)-open functionn

Abstract

In generalised topological space (X,μ), a μ-space is said to be μ-nearly compact if every μ-regular open cover of X has a finite subcover. In literature, many generalised continuities in a topological space are constructed using many generalised open sets. Relationships among them are studied by proving their implications and finding counterexamples for their independent relationships. Many researchers called this type of study a decomposition of continuities. In this paper, we further investigate some decompositions of (μ,σ)-continuity and applying them to μ-nearly compact spaces. Moreover, we also analyse the effect of mappings on these spaces and obtain some results. The main result is that the (μ,σ)-δ-continuous image of μ-nearly compact space is σ-nearly compact.

References

Al-Omari, A., & Noiri, T. (2012). A unified of contra--continuous functions in generalized topological spaces. Acta Mathematica Hungarica, 135, 31-41. https://doi.org/10.1007/s10474-011-0143-x

Császár, Á. (2002). Generalized topology, generalized continuity. Acta Mathematica Hungarica, 96(4), 351-357. https://doi.org/10.1023/A:1019713018007

Császár, Á. (2005). Generalized open sets in generalized topologies. Acta Mathematica Hungarica, 106(1-2), 53-66. https://doi.org10.1007/s10474-005-0005-5

Császár, Á. (2008). - and -modifications of generalized topologies. Acta Mathematica Hungarica, 120, 275-279. https://doi.org/10.1007/s10474-007-7136-9

Fawakhreh, A. J., & Kiliçman, A. (2002). Mappings and some decompositions of continuity on nearly Lindelöf space. Acta Mathematica Hungarica, 97(3), 199-206. https://doi.org/10.1023/A:1020803027828

Mariam, M., Kılıçman, A., & Sarsak, M. S. (2016). Generalization of soft -compact soft generalized topological spaces. arXiv: General Topology.

Mariam, M., Kılıçman, A., & Sarsak, M. S. (2017). -Lindelöfness. Malaysian Journal of Mathematical Sciences, 11(S), 73-86.

Min, W. K. (2009). Almost continuity on generalized topological spaces. Acta Mathematica Hungarica, 125(1-2), 121-125. https://doi.org/10.1007/s10474-009-8230-y

Min, W. K. (2010). -continuity on generalized topological spaces. Acta Mathematica Hungarica, 129(4), 350-356. https://doi.org/10.1007/s10474-010-0036-4

Noiri, T. (1999). Almost -closed functions and separation axioms. Acta Mathematica Hungarica, 82(3), 193-205. https://doi.org/10.1023/A:1026404730639

Noiri, T. (2006). Unified characterizations for modifications of and topological spaces. Rendiconti del Circolo Matematico di Palermo, 55(1), 29-42. https://doi.org/10.1007/BF02874665

Rose, D. A. (1984). Weak openness and almost openness. International Journal of Mathematics and Mathematical Sciences, 7(1), 35-40. https://doi.org/10.1155/S0161171284000041

Salleh, Z., & Kılıçman, A. (2010). Mappings and decompositions of pairwise continuity on pairwise nearly Lindelöf spaces. Albanian Journal of Mathematics, 4(2) (2010), 31-47.

Salleh, Z., & Rashdi, F. N. (2021). Some results on -nearly compactness in generalized topological spaces. Poincare Journal of Analysis and Applications, 8(1), 127-137. https://doi.org/10.33786/pjaa.2021.v08i01(i).012

Sarsak, M. (2012). Weakly μ-compact spaces. Demonstratio Mathematica, 45(4), 929-938. https://doi.org/10.1515/dema-2013-0411

Published

02-03-2023