GEOMETRIC PROPERTIES OF MULTIVALENT FUNCTIONS ASSOCIATED WITH PARABOLIC REGIONS

Authors

  • SH NAJAFZADEH Department of Mathematics, Payame Noor University
  • ZABIDIN SALLEH Faculty of Ocean, Engineering Technology and Informatics, University Malaysia Terengganu

DOI:

https://doi.org/10.46754/jmsi.2022.06.006

Keywords:

Multivalent function, Parabolic starlike function, Parabolic uniformly convex function, Parabolic region

Abstract

The main purpose of this article is to derive the connections between the parabolic starlike and parabolic uniformly convex functions by applying an integral operator on multivalent functions. In addition, a parabolic region in the half-plane is introduced to study the family of parabolic multivalent convex functions of order a and type β.

References

B. Ahmad, M. G. Khan, B. A. Frasin, M. K. Aouf, T. Abdeljawad, W. K. Mashwani & M. Arif. (2021). On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 6(4), 3037-3052. doi:10.3934/math.2021185. DOI: https://doi.org/10.3934/math.2021185

R. M. Ali. (2005). Starlikeness associated with parabolic regions. International Journal of Mathematics and Mathematical Sciences, 2005(4), 561-570. doi:10.1155/ IJMMS.2005.561. DOI: https://doi.org/10.1155/IJMMS.2005.561

Q. Hu, H. M. Srivastava, B. Ahmad, Na. Khan, M. G. Khan, W. K. Mashwani & B. Khan. (2021). A subclass of multivalent Janowski type q-starlike functions and its consequences. Symmetry, 13(7), 1275. https://doi.org/10.3390/sym13071275. DOI: https://doi.org/10.3390/sym13071275

B. Khan, Z. -G. Liu, T. G. Shaba, S. Araci, N. Khan & M. G. Khan. (2022). Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials. Journal of Mathematics, 2022, Article ID 8162182, 7 pages. https://doi. org/10.1155/2022/8162182 DOI: https://doi.org/10.1155/2022/8162182

S. Kulkarni, G. Murugusundaramoorthy & S. Najafzadeh. (2007). On certain generalized class of -valently parabolic starlike functions based on an integral operator. Mathematica (Cluj) – Tome, 49(72), 49-53.

S. R. Mondal. (2022). Radius of k-parabolic starlikeness for some entire functions. Symmetry, 14(4), 637. https://doi. org/10.3390/sym14040637. DOI: https://doi.org/10.3390/sym14040637

G. Murugusundaramoorthy. (n.d.). Pascal distribution series and its applications on parabolic starlike functions with positive coefficients. Int. J. Nonlinear Anal. Appl. In Press, 1–11.

Sh. Najafzadeh. (2021). Application of strip domain and parabolic region on univalent holomorphic functions. Al-Qadisiyah Journal of Pure Science, 26(5), Math 66–71. DOI: https://doi.org/10.29350/qjps.2021.26.5.1436

F. Rønning. (1993). Uniformly convex functions and a corresponding class of starlike functions. Proceedings of the American Mathematical Society, 118(1), 189-196. DOI: https://doi.org/10.1090/S0002-9939-1993-1128729-7

H. Srivastava & A. Mishra. (2000). Applications of fractional calculus to parabolic starlike and uniformly convex functions. Computers & Mathematics with Applications, 39(3-4), 57-69. DOI: https://doi.org/10.1016/S0898-1221(99)00333-8

H. Srivastava, A. Mishra & M. Das. (2003). A class of parabolic starlike functions defined by means of a certain fractional derivative operator. Fractional Calculus and Applied Analysis, 6(3), 281-298.

H. M. Srivastava, G. Murugusundaramoorthy & S.Sivasubramanian. (2007. Hypergeometric functions in the parabolic starlike and uniformly convex domains. Integral Transform and Special Functions, 18(7), 511-520. DOI: https://doi.org/10.1080/10652460701391324

Published

30-06-2022