A REMARK ON THE EDGE IRREGULARITY STRENGTH OF CORONA PRODUCT OF TWO PATHS

Authors

  • ROSLAN HASNI Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu
  • IBRAHIM TARAWNEH Khalid Ibn Al- Walid School
  • MOHAMAD NAZRI HUSIN Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu

DOI:

https://doi.org/10.46754/jmsi.2022.06.005

Keywords:

Irregular assignment, Irregular strength, Edge irregularity strength, Corona product, Paths

Abstract

With respect to a simple graph G, a vertex labeling ϕ: V(G) > {1,2,...,k) is known as k-labeling. The weight corresponding to an edge xy in G, expressed as wϕ (xy), represents the labels sum of end vertices x and y, given by wϕ (xy) = ϕ(x) + ϕ(y) A vertex k-labeling is expressed as an edge irregular k-labeling with respect to graph G provided that for every two distinct edges e and f, there exists wϕ(e) ≠ wϕ(f) Here, the minimum k where the graph G possesses an edge irregular k-labeling is known as the edge irregularity strength with respect to G, expressed as (G). Here, we examine the edge irregularity strength’s exact value of corona product with respect to two paths Pn and Pm , in which n ≥ 2 and m = 3, 4, 5.

References

A. Ahmad, O. Al-Mushayt & M. Bača. (2014). On edge irregular strength of graphs. Applied Mathematics and Computation, 243, 607–610. DOI: https://doi.org/10.1016/j.amc.2014.06.028

A. Ahmad. (n.d.). Computing the edge irregularity strength of certain unicyclic graphs, submitted.

A. Ahmad, M. Bača & M. F. Nadeem. (2016). On edge irregularity strength of Toeplitz graphs. U.P.B. Sci. Bull., Series A, 78(4), 155-162.

A. Ahmad, A. Gupta & R. Simanjuntak. (2018). Computing the edge irregularity strength of chain graphs and join of two graphs. Electronic Journal of Graph Theory and Applications, 6(1), 201-207. DOI: https://doi.org/10.5614/ejgta.2018.6.1.15

O. Al-Mushayt. (2017). On the edge irregularity strength of products of certain families with P2, Ars Comb., 135, 323–334.

M. Bača, S. Jendrol’, M. Miller & J. Ryan. (2007). On irregular total labellings. Discrete Mathematics, 307(11-12), 1378-1388. DOI: https://doi.org/10.1016/j.disc.2005.11.075

G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz & F. Saba. (1988). Irregular networks. Congr. Numer., 64, 187-192.

J. A. Gallian. (2017). A dynamic survey graph labelling. The Electronic Journal of Combinatorics, DS6, 1-415.

M. Imran, A. Aslam, S. Zafar & W. Nazeer. (2017). Further results on the edge irregularity strength of graphs. Indonesian J. Combin., 1(2), 36-45. DOI: https://doi.org/10.19184/ijc.2017.1.2.5

I. Tarawneh, R. Hasni & A. Ahmad. (2016). On the edge irregularity strength of corona product of graphs with paths. Applied Mathematics E-Notes, 16, 80-87.

I. Tarawneh, R. Hasni & A. Ahmad. (2016). On the edge irregularity strength of corona product of cycle with isolated vertices. AKCE International Journal of Graphs and Combinatorics, 13, 213-217] I. Tarawneh, A. Ahmad, G. C. Lau, S. M. Lee, & R. Hasni. (2020). On the edge irregularity strength of corona product of graphs with cycle. Discrete Mathematics, Algorithms and Applications, 12(6), 2050083. DOI: https://doi.org/10.1016/j.akcej.2016.06.010

I. Tarawneh, R. Hasni & M. A. Asim. (2018). On the edge irregularity strength of disjoint union of star graph and subdivision of star graph. Ars Combinatoria -Waterloo then Winnipeg-, 141, 93-100.

A. Alrawajfeh, B. N. Al-Hasanat, H. Alhasanat & F. M. Al Faqih. (2021). On the edge irregularity strength of bipartite graph and corona product of two graphs. International Journal of Mathematics and Computer Science, 16(2), 639-645.

Published

30-06-2022