MODELLING INDIAN OCEAN AIR TEMPERATURE USING ADDITIVE MODEL
DOI:
https://doi.org/10.46754/jmsi.2022.06.003Keywords:
Air temperature, Linear model, Generalized Linear model, Generalized additive model, Gaussian processAbstract
In this study, we used the fluctuating air temperature dataset. The change is caused by data fluctuations, trend, seasonality, cyclicity and irregularities. The generalized additive model (GAM) data approach is used to describe these phenomena. The aim of this research is to find out the factors that affect the air temperature in the Indian Ocean, find a suitable model, and obtain the best model from three approximate methods, namely the Linear Model (LM), the Generalized Linear Model (GLM), and the GAM models, which use a dataset of factors that affect the temperature of the Indian Ocean (close to Aceh region). For the air temperature of α = 0.05, the significant effects are precipitation, relative humidity, sea surface temperature, and the wind speed. The LM, GLM and GAM models are quite feasible because they all meet and pass the classical hypothesis tests, namely the normality test, multicollinearity test, the heteroscedasticity test, and the autocorrelation test. The appropriate model is GAM model based on adaptive smoothers. Compared to the LM, GLM and GAM models, GAM model with the adaptive smoothers base gave smallest AIC values of 4552.890 and 2392.396 where modeling was without and with time variable respectively. Therefore, it can be said that the correct model used at air temperature is the GAM model for adaptive smoothers base.
References
I. Ghozali. (2009). Aplikasi Analisis Multivariate dengan Program SPSS. Semarang: UNDIP.
I. Komang. (2001). Penerapan gam untuk pendugaan model produksi. Bogor: IPB
M. H., Kutner, C. J., Nachtsheim & J. Neter, W. Li. (2005). Applied linear statistical models (5th ed.). New York: Mc Graw-Hill.
S. Weisberg. (2014). Applied Linear Regression (4th ed.)., Hoboken, New Jersey: John Wiley & Sons, Inc.
T. Z. Keith. (2014). Multiple regression and beyond: An introduction to multiple regression and structural equation modeling (2nd ed.). New York: Routledge. DOI: https://doi.org/10.4324/9781315749099
P. l. Roback & J. Legler. (2021). Beyond multiple linear regression: Applied generalized linear models and multilevel models in R. United Kingdom: Taylor and Francis Group. DOI: https://doi.org/10.1201/9780429066665
M. Miftahuddin. (2016). Fundamental fitting of the SST data using linear regression models. Proceedings 12th International Conference on Mathematics, Statistics, and Their Applications (ICMSA), (pp. 128-133). IEEE. Xplore, ISBN: 978-1-5090-3385-0. DOI: https://doi.org/10.1109/ICMSA.2016.7954324
M. Miftahuddin & Y. Ilhamsyah. (2018). Modeling of sea surface temperature using linear models with autocorrelation Indian Ocean. IOP Conference Series: Earth and Environmental Science, 176, 1755-1315, 176 (2018) 012038. DOI: https://doi.org/10.1088/1755-1315/176/1/012038
P. McCullagh & J. A. Nelder. (1989). Generalized linear models (2nd ed.). London: Chapman and Hall. DOI: https://doi.org/10.1007/978-1-4899-3242-6
P. K. Dunn & G. K. Smyth. (2018). Generalized linear models with examples in R. New York: Springer. DOI: https://doi.org/10.1007/978-1-4419-0118-7
A. G. Barnett & A. J. Dobson. (2018). An introduction to generalized linear models (4th ed.). United Kingdom: Taylor and Francis Group.
Y. N. Kamaruzzam, M. A. Muzzneena, A. Mustapha & M. Abd Ghaffar. (2021). Determination of fishing grounds distribution of the Indian mackerel in Malaysia’s Exclusive Economic Zone off South China Sea using boosted regression trees model. Thalassas: An International Journal of Marine Sciences, 27. https://doi.org/10.1007/s41208-020-00282-0 DOI: https://doi.org/10.1007/s41208-020-00282-0
K. H. D. Tang. (2019). Climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Science of the Total Environment, 650, 1858-1871. doi: 10.1016/j.scitotenv.2018.09.316. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.316
M. Haghbin, A. Sharafati, D. Motta, N. Al-Ansari & M. H. M. Noghani. (2021). Applications of soft computing models for predicting sea surface temperature: A comprehensive review and assessment. Progress in Earth and Planetary Science, 8(4), 1-19. DOI: https://doi.org/10.1186/s40645-020-00400-9
H. Cheng, L. Sun & J. Li. (2021). Neural network approach to retrieving ocean subsurface temperatures from surface parameters observed by satellites. Water, 13(3), 1-20. DOI: https://doi.org/10.3390/w13030388
S. Prawirowardoyo. (1996). Meteorologi. Bandung: ITB.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 PENERBIT UMT
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.