STABILITY OF THE NUMERICAL SOLUTION FOR THE MIXED PROBLEM OF THE SAINT-VENANT EQUATIONS

Article 6

Authors

DOI:

https://doi.org/10.46754/jmsi.2021.12.006

Keywords:

Exponential stability, Difference scheme, Lyapunov function, Mixed problem, Saint-Venant equations

Abstract

This article is devoted to the construction and study of the exponential stability of an explicit upwind difference scheme for a mixed problem for the linear system of the Saint Venant equation. For the numerical solution of the mixed problem for the linear system of the Saint Venant equation, an explicit upwind difference scheme is constructed. For a numerical solution, a discrete Lyapunov function is constructed and an a priori estimate for it is obtained. On the basis of the discrete Lyapunov function, the exponential stability of the numerical solution of the initial-boundary-value difference problem of the mixed problem for the linear system of the Saint Venant
equation is proved. A theorem on the exponential stability of the numerical solution of the initial-boundary-value difference problem is proved. The behavior of the discrete Lyapunov function is numerically investigated depending on the algebraic condition of exponential stability of the numerical solution of the mixed problem. The results of the theorem on the exponential stability of the numerical solution are confirmed by a specific example of an open channel flow problem.

References

A. J. C. Barré de Saint-Venant. (1871). Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de marées dans leurs lits. Comptes Rendus de l’Académiedes Sciences, 73, 147-154 & 237-240.

O. F. Vasiliev, S. K. Godunov, N. A. Pritvits, T. A. Temnoeva, I. L. Fryazinova & S. M. Shugrin. (1963). A numerical method for calculating the propagation of long waves in open channels and its application to the problem of flooding. Reports of the USSR Academy of Sciences, 151(3), 525-527. DOI: http://mi.mathnet.ru/dan28337.

A. Hayat & P. Shang. (2019). A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and spacevarying slope. Automatica, 100, 52-60. DOI:10.1016/j.automatica.2018.10.035.

S. K. Godunov. (1979). Equations of mathematical physics. Moscow: “Science”, 392. http://eqworld.ipmnet.ru/ru/library/books/Godunov1979ru.djvu.

G. Bastin & J. M. Coron. (2016). Stability and boundary stabilization of 1-D Hyperbolic Systems, Birkhauser Basel. Switzerland:

Springer International Publishing.

S. GoEttlich & P. Schillen. (2017). Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization. European Journal of Control, 35, 11-18. DOI:10.1016/j.ejcon.2017.02.002.

G. Bastin & J. M. Coron. (2017). A quadratic Lyapunov function for hyperbolic densityvelocity systems with nonuniform steady states. Systems and Control Letters, 104, 66-71. DOI:10.1016/j.sysconle.2017.03.013.

G. Bastin, J. M. Coron & B. d. Novel. (2009). On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogeneous Media, 4, 177–187. DOI: 10.3934/nhm.2009.4.177.

J. M. Coron & G. Bastin. (2015). Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov

stability for the C1-norm. SIAM Journal on Control and Optimization, 53(3), 1464-1483. DOI: 10.1137/14097080X.

J. M. Coron J. M., H. Long & G. Olive. (2017). Finite-time boundary stabilization of general linear hyperbolic balance laws via

Fredholm backstepping transformation. Automatica Journal IFAC, 84, 95-100. DOI: 10.1016/j.automatica.2017.05.013.

C. S. Peskin. (2002). The immersed boundary method. Acta Numerica, 11, 479-517. DOI:10.1017/S0962492902000077.

K. N. Volkov. (2005). Implementation of a splitting scheme on a spaced grid for calculating unsteady flows of a viscous incompressible fluid. Computational Methods and Programming, 6, 269-282. DOI: http://mi.mathnet.ru/vmp648.

A. M. Blokhin, R. D. Aloev & M. U. Hudayberganov. (2014). One class of stable difference schemes for hyperbolic system. American Journal of Numerical Analysis, 2(3), 85-89. D O I : h t t p : / / p u b s .sciepub.com/ajna/2/3/4.

R. D. Aloev, M. U. Khudoyberganov & A. M. Blokhin. (2018). Construction and research of adequate computational models for quasilinear hyperbolic systems. Numerical Algebra, Control and Optimization, 8 (3), 287–299. DOI: 10.3934/naco.2018017.

A. S. Berdyshev, K. K. Imomnazarov, T. Jian-Gang & A. Mikhailov. (2016). The Laguerre spectral method as applied to numerical solution of a two-dimensional linear dynamic seismic problem for porous media. Open Computer Science, 1, 208-212. DOI:10.1515/comp-2016-0018.

A. Diagne, M. Diagne, S. Tang & M. Krstic. (2015). Backstepping stabilization of the linearized Saint-Venant-Exner model: Part II - output feedback. 54th IEEE Conference on Decision and Control (CDC), 1248-1253. DOI: 10.1109/CDC.2015.7402382.

A. A. Samarsky & E.S. Nikolaev. (1978). Methods for solving grid equations. Moscow: “Science”, 532. DOI: http://samarskii.ru/books/book1978.pdf

Downloads

Published

31-12-2021