APPROXIMATE ANALYTICAL STUDY OF UNSTEADY FLOW AND HEAT TRANSFER ANALYSIS OF CARBON NANOTUBES NANOFLUID OVER STRETCHING SHEET

Article 3

Authors

DOI:

https://doi.org/10.46754/jmsi.2021.12.003

Keywords:

Nanofluid, CNTs, Stretching Sheet, OHAM, Heat transfer

Abstract

The aim of this paper is to study approximate analytical unsteady flow and heat transfer analysis of CNTs nanofluid over stretching sheet for the improvement of heat assignment ratio. The present work has some important application in industry and engineering because the heat transfer ratio of nanofluid is larger compared to other fluid. With the help of defined similarity transformation, the nonlinear partial differential equations is converted to nonlinear ordinary differential equations. The model of nonlinear ordinary differential equations are then solved by Optimal Homotopy Asymptotic Method. The impact of different parameters are then interpreted using graphs in the form of velocity and temperature profiles. The influence of skin friction coefficient and Nusselt number is presented in the table form.

References

B. C. Sakiadis. (1961). Boundary layer behavior on continuous solid surfaces: I Boundary layer equations for two dimensional and axisymmetric flow, II. Boundary layer on a continuous flat surface. AICHE J., 7, 221-225.

L. J. Crane. (1970). Flow past a stretching plate. ZAMP, 21, 645-647.

P. S. Gupta & A. S. Gupta. (1977). Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng., 55, 744-746.

K. G. Kumar, B. J. Gireesha, S. Manjunatha & N. G. Rudraswamy. (2017). Effect of nonlinear thermal radiation on doublediffusive

mixed convection boundary layer flow of viscoelastic nanofluid over a stretching sheet. Int. J. of Mech. and Mat. Eng., 12(1), 18.

K. G. Kumar, B. J. Gireesha, N. G. Rudraswamy & S. Manjunatha. (2017). Radiative heat transfers of Carreau fluid flow over a stretching sheet with fluid particle suspension and temperature jump. Results in Physics, 7, 3976-3983.

K. G. Kumar, B. J. Gireesha & R. S. R. Gorla. (2018). Flow and heat transfer of dusty hyperbolic tangent fluid over a stretching sheet in the presence of thermal radiation and magnetic field. Int. J. Mech. and Mat. Eng., 13(1), 1-11.

K. G. Kumar, B. J. Gireesha, G. K. Ramesh & N. G. Rudraswamy. (2018). Doublediffusive free convective flow of Maxwell nanofluid past a stretching sheet with nonlinear thermal radiation. Journal of Nanofluids, 7(3), 499-508.

M. R. Krishnamurthy, K. G. Kumar, B. J. Gireesha & N. G. Rudraswamy. (2018). MHD flow and heat transfer (PST and PHF) of dusty fluid suspended with alumina nanoparticles over a stretching sheet embedded in a porous medium under the influence of thermal radiation. Journal of Nanofluids, 7(3), 527-535.

K. G. Kumar, N. G. Rudraswamy, B. J. Gireesha & S. Manjunatha. (2017). Nonlinear thermal radiation effect on Williamson fluid with particle-liquid suspension past a stretching surface. Results in Physics, 7, 3196-3202.

A. Rehman, T. Gul, Z. Salleh, S. Mukhtar, F. Hussain, K. S. Nisar, & P. Kumam. (2019). Effect of the Marangoni convection in the unsteady thin film spray of CNT nanofluids. Processes, 7(6), 392.

R. Ganguly, S. Sen & I. K. Puri. (2004). Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J.

Magn. Magn. Mater, 271, 63-73.

A. Malvandi & D. D. Ganji. (2015). Effects of nanoparticle migration on hydromagnetic mixed convection of alumina/water nanofluid in vertical channels with asymmetric heating. Phys E., 66, 181-196.

M. Haghshenas Fard, M. N. Esfahany & M. R. Talaie. (2010). Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. Int. Communic. Heat Mass Transf., 37, 91-97.

H. Bahremand, A. Abbassi, M. Saffar-Avval. (2015). Experimental and numerical investigation of turbulent nanofluid flow in helically coiled tubes under constant wall heat flux using Eulerian–Lagrangian approach. Powder Technol., 269, 93-100.

S. Lee, S. U. S. Choi, S. Li & J. A. Eastman. (1992). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280-289.

D. S. Maciver, H. H. Tobin & R. T. Barth. (1963). Catalytic aluminas I. Surface chemistry of eta and gamma alumina. J. Catal., 2, 487-497.

G. A. Sheikhzadeh, M. M. Fakha & H. Khorasanizadeh. (2017). Experimental investigation of laminar convection heat transfer of Al2O3-Ethylene Glycol-Water nanofluid as a coolant in a car radiator. Journal of Applied Fluid Mechanics, 10, 209-219.

X. Wang, X. Xu & S. U. S. Choi. (1999). Thermal conductivity of nanoparticles-fluid mixture. Journal of Thermo-physics and Heat Transfer, 13, 474-480.

R. L. Hamilton & O. K. Crosser. (1962). Thermal conductivity of heterogeneous two component systems. Industrial and

Engineering Chemistry Fundamentals, 1, 187-191.

S. E. B. Maiga, C. T. Nguyen, N. Galanis & G. Roy. (2004). Heat transfer behaviors of nanofluids in a uniformly heated tube. Super Lattices and Microstructures, 35, 543-55.

N. Ahmed, Adnan, U. Khan & S. T. Mohyud-Din. (2017). Influence of an effective Prandtl number model on squeezed flow of γAl2O3-C2H6O2 and γAl2O3-H2O nanofluids. Journal of Molecular Liquids, 238, 447-454.

M. M. Rashidi, V. N. Ganesh, H. A. K. Abdul, B. Ganga & G. Lorenzini. (2016). Influences of an effective Prandtl number model on nanoboundary layer flow of Al2O3-H2O and γAl2O3-C2H6O2 over a vertical stretching sheet. International Journal of Heat and Mass Transfer, 98, 616-623.

T. Hayat, F. Shah, M. Ijaz Khan, M. Imran Khan & A. Alsaedi. (2018). Entropy analysis for comparative study of effective Prandtl number and without effective Prandtl number via γAl2O3-H2O and γAl2O3-C2H6O2 nanoparticles. J. Molecular Liquids, doi:10.1016/j.molliq.2018.06.029.

H. I. Andersson & O. A. Valnes. (1998). Flow of heated ferrofluid over a stretchingsheet in the presence of a magnetic dipole. Acta Mech., 128, 39-47.

A. Zeeshan, A. Majeed & R. Ellahi. (2016). Effect of magnetic dipole on viscous ferrofluid past a stretching surface with thermal radiation. J. Molecular Liquids, 215, 549-554.

M. Noor & S. Nadeem. (2017). Ferrite nanoparticles Ni-ZnFe2O4, Mn-ZnFe2O4 and Fe2O4 in the flow of ferromagnetic nanofluid. Eur. Phys. J. Plus, 132, 377.

S. Iijima. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58.

P. M. Ajayan & S. Iijima. (1993). Capillarityinduced filling of carbon nanotubes. Nature, 361, 333-334.

C. W. S. To. (2006). Bending and shear moduli of single–walled carbon nanotubes. Finite Elem. Anal. Des., 42(5), 404-413.

M. S. Dresselhaus, G. Dresselhaus & R. Saito. (1995). Physics of carbon nanotubes. Carbon, 33(7), 883-891.

J. Hone. (2004). Carbon nanotubes: Thermal properties. Dekker Encycl Nanosci. Nanotechnol., 7, 603-610.

R. U. Haq, S. Nadeem, Z. H. Khan & N. F. M. Noor. (2015). Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys. B Condens. Matter, 457, 40-47.

W. A. Khan, Z. H. Khan & M. Rahi. (2014). Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl. Nano Sci., 4, 633-641.

R. Kamali & A. R. Binesh. (2010). Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids. Int. Commun. Heat and Mass Trans., 37, 1153-1157.

A. Rehman, Z. Salleh, T. Gul & Z. Zaheer. (2019). The impact of viscous dissipation on the thin film unsteady flow of GO-EG/ GO-W nanofluids. Mathematics, 7(7), 653.

S. J. Liao. (2010). An optimal homotopyanalysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2003-2016.

Downloads

Published

31-12-2021