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This study examines a model operator  corresponding to a system 
of two identical fermions and another particle of a different nature. 
The operator acts on the direct sum of zero-, one-, and two-particle 
subspaces of the fermionic Fock space  over , where 

. The essential spectrum of this operator is shown to consist of 
the union of at most four segments on the real axis. A formula for the 
corresponding resolvent operator is also explicitly derived. Keywords:
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Introduction 

Understanding the spectral properties of operators corresponding to systems of two, three or many 
particles has been of great importance in statistical physics [1, 2], solid-state physics [3, 4], and 
quantum field theory [5, 6]. For the important class of multi-particle systems, where the number of 
particles is not conserved, Sigal et al. [7] determined the location of the spectrum and proved the 
absence of singular continuous spectrum for Hamiltonians, employing geometric and commutator 
techniques. Additionally, accumulation points of the discrete spectrum were identified. 

Conventionally, systems of  particles interacting via pair potentials in a Fock space, where the 
number of particles is not conserved, can be reduced to several simpler subsystems. For example, 
instead of studying self-adjoint operators in the Fock space , one might consider the subspaces 

 corresponding to r ≤ n particles [1, 4-8]. Albeverio et al. [9, 10] studied model operators 
corresponding to two-boson systems and another particle of a different nature, thoroughly describing 
the essential spectrum. These model operators were described by so-called truncated operators, 
which correspond to subsystems of 0, 1 and 2 particles of the considered Fock space. 

In this article, the essential spectrum of the model operator in the fermionic Fock space 
 over  is studied. The essential spectrum, which coincides with the spectrum of the 

Friedreich model , where , is explicitly determined under certain smoothness conditions. 
It is shown that the essential spectrum of the operator  consists of a union of closed intervals on 
the real axis (Theorem 5.1). Furthermore, the explicit form of the corresponding resolvent operator 
is derived (Theorem 5.2).
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The article is organised as follows: Section 1 is the introduction. Section 2 introduces the 
notations and describes the model operator. In Section 3, the channel operator and the Friedrichs 
models , where , are defined, and their properties are discussed. Section 4 offers a brief 
review of the Faddeev-type integral equation for the operator . The main results and their proofs 
are presented in Section 5.

The Model Operator

The following notations are adopted:  is the -dimensional torus, an abelian group   
modulo  denotes the subspace of antisymmetric functions of the Hilbert space 

. The following sets are defined: 

, and  

Let Ij and , where j = 0,1,2, denote the identity operator and an inner product in , 
respectively. The direct sum of subspaces corresponding to 0, 1, and 2 particles in the Fock space

 of fermions over  is defined as: 

For , the operators  and  are defined as: 

	

	

 and the operators  and  are defined as: 

	

	

For  let , where i < j (resp. i > j ) denote the annihilation (resp. creation) operator 
[5] in a Fock space. Annihilation operators reduce the number of particles by one in any state, while 
creation operators increase the number by one. For simplicity, it is assumed that the number of 
annihilation and creation operators is equal to one, i.e.,  for all . The following 
operators are defined:

with  , and  being multiplication operators by the functions , and  in 
, and , respectively. The integral operator  of a kernel  is expressed as: 

Here, u0 is a constant number and  are real functions continuous on ,  
is a real symmetric function continuous on , and  is a function that satisfies 
the self-adjointness property, i.,e., .

With these definitions, the truncated operator T is described by the matrix operator  in the space  
as:
				    						    
										          (2.1)
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This operator is a bounded, self-adjoint operator. 

The Channel Operator and the Friedrichs Model 

Next, a self-adjoint operator  is considered, which acts in  as a 
matrix operator: 

This operator is called a channel operator associated with  [11]. Since  is of a simpler 
form than , analysing its spectrum becomes considerably more straightforward. The relationship 
between the spectra of the channel operators and the operator  will be established later.

Let U
α
 be a multiplication operator by the function α(∙), defined as: 

It follows that Hch commutes with U
α
, i.e., Hch Uα 

= U
α 

Hch. This, along with the decomposition  
where , implies that the operator Hch can also be written as an 

integral decomposition [12, Theorem XIII.84]: 

				    			   (3.1)

Here, , being a Friedrichs model, is a bounded and self-adjoint operator defined 
in the space  as: 

where  and V are operators acting as

respectively, where , is a multiplication operator by the function , i.e., 

Friedrichs models of this form were studied in [9, 10].

Due to the spectral properties of a decomposable operator [12, Theorem XIII.85], Equation (3.1) 
yields the following.

Theorem 3.1.  For the spectrum of the operator , the following relation holds: 

where  is the discrete spectrum of , and: 

3.1 Subsection. The spectral properties of the Friedrichs model  .
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As V is an operator of finite rank, the essential spectrum of coincides with the spectrum of  
, i.e.: 

where 
				    	

Next, for any , the Fredholm determinant  of the operator  is defined as an 
analytic function  in , given by:

	 (3.2)

where . Using this equality and the forms of the included operators, the following expression 
is derived: 

where ,  is the resolvent of .

Lemma 3.2. For , is an eigenvalue of the operator . 

Proof. Using the definition of the operator  from the equation: 

			   					    (3.3)

the following system of equations is obtained: 

	

which is equivalent to: 

	  		 (3.4)

Moreover, the solutions of Equations (3.3) and (3.4) are connected by the following relations:

 

On the other hand, the determinant of Equation (3.4) is equal to . Therefore, the equation   
, has a nontrivial solution if and only if . 

Let the notations  represent the 
number of eigenvalues of  lying below z (resp. above z), counted with multiplicities.
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Lemma 3.3. For any fixed , the following hold:

(a) If  and  are bounded (resp. unbounded), then 

(b) 

                

Proof. We can easily obtain that: 

and these are simple eigenvalues of the matrix operator 

According to the definition of the operator , where  is the subspace 
spanned by  and . Using this and the facts that  and , the following are 
true for the operator V.  

(i) If the functions  and  are linearly bounded, then V has two positive eigenvalues 
(with multiplicities) and one (simple) negative eigenvalue; and, 

(ii) If the functions  and  are linearly unbounded, then V has only one (simple)  
positive and one (simple) negative eigenvalues. 

According to the inequalities , and the minimax principle, 
the numbers  and  satisfy the relations: 

respectively.

Using assertions (i) and (ii), as well as the relations  and 
, the proof is completed. 

Corollary 3.4.  Let . 

 (a) If  and  are linearly bounded (unbounded), the function  can have no more 
than one zero (two zeros) in the interval . 

           (b)   may have only one zero in the interval . 

The Faddeev-type Equation

Denote the spectrum of the channel operator  as: 

	 , then 

where , i.e., 

	  for some 

Theorem 4.1  The essential spectrum  of  coincides with the set , i.e., 

Proof. The proof can be found in [9]. 
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4.1 Subsection. Faddeev-type integral equation

For any , the operators 

are multiplication operators by the corresponding functions in .

Furthermore, the operator 

is a multiplication operator by the function , where 
 is the resolvent of .

Set , where .

For any , define the matrix operators A(z) and K(z), acting in the space , as follows: 

where , are multiplication operators by functions , defined 
as: 

             (4.1)

and the operators , are defined by: 

                                (4.2)

Note that for any , the operators  are Hilbert-Schmidt operators, and so is K(z) in .

Lemma 4.2.  For any ,  is a bounded invertable operator, and its inverse, , is 
of the form: 

where , are multiplication operators by the functions , 
defined as: 

Proof. According to the definition,  A(z) is a multiplication operator by the matrix 
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As a function of ,  is continuous in  and ,  for 
. Therefore, it follows that A–1(z), the inverse of A(z), is a multiplication operator by the 

matrix  in . 

The following lemma establishes a connection between the eigenvalues of the operators  and 
.

Lemma 4.3.  is an eigenvalue of   is an eigenvalue of . 

Proof. The proof of the lemma for  can be found in [10]. For the right side of the 
essential spectrum, , it can be done analogously.

Formulation and Proof of the Main Results

The main results of the work are formulated below.

Theorem 5.1  The essential spectrum  of the operator  consists of a union of no more than 
four closed intervals. 

Proof. Let  be the largest closed interval containing , which may coincide 
with . Define: 

	                                                                 (5.1)

If , then  consists of only one closed interval .

Assume that . Then, , and by the definition of the spectrum, the set  is 
closed. According to definiton (5.1), for any , the operator  has an eigenvalue in .

Suppose that , where  lie in the boundary set of . Let  be the set consisting 
of points  such that  has an eigenvalue in [a,b]. It will be shown that . 
Let . Then, by Theorem 3.1 and Lemma 4.2, there exists a number  [a,b] such that 

. However, for any , and the function  is analytic 
in some region containing [a,b]. Consequently, either  or . By the 
implicit function theorem, there exist neighbourhoods  and  [a,b] of the points 

 and , respectively, and a continuous function  such that  
for all . By Lemma 4.2, the number  [a,b] is an eigenvalue of  for any 

, which implies that  is an open set.

Next, the closedness of the set  is proven. Let  be a sequence that converges to  
and let  [a,b] be an eigenvalue of the operator .Without loss of generality 

(or by choosing a subsequence), it can be assumed that: 

	

Since the function  is continuous in  [a,b], it follows that: 

	

and, therefore, , since [a,b] is closed. Hence, the set  is closed. As  is both open and 
closed, it follows that .

According to Corollary 3.4, the discrete spectrum of   contains no more than three 
eigenvalues. Therefore, the number of closed intervals [a,b]  does not exceed three. Since 
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, it is concluded that the essential spectrum  consists of the 
union of no more than four segments.

5.1	 Subsection. Resolvent operator of   

Finally, the resolvent operator of  is considered in the form: 

where , are its matrix entries.

The rows   are given by: 

For , define: 

where  is the resolvent of the operator .

Then, the following equation holds: 

i.e., 

	             (5.2)

Next, define a unitary operator  as: 

With this definition, the following relations hold: 

Using these expressions in 

Equation (5.2) simplifies to: 

where

 

and 
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Denote . Then,  can be rewritten as:

 

According to Equations (5.1) and (5.2), the following relations hold: 

	

	

	

	

	

Therefore, 			 

		  				    (5.3)

According to Lemma 4.3, if λ = 1 is not an eigenvalue of , then Equation (5.3) has a solution:

The last equation and Equation (5.2) yield the following theorem. 

Theorem 5.2. Let . The resolvent of  is of the form: 
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