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ARTICLE INFO ABSTRACT

Article History: Wild Asian Arowana fish have been an endangered species since 1976, and
Received 3 AUGUST 2023 need attention to avoid extinction. Factors that threaten the population of wild
Accepted 24 MARCH 2024 Arowana include its own reproductive method and spawning location. This
Published 15 JUNE 2024  research is aimed at considering a mathematical model to understand r the
population dynamics of wild Arowana fish and its prey. The model is analysed

Keywords: both analytically and numerically. We solved the model to obtain equilibria
Mathematical model; and analysed the stability of equilibria by determining the eigenvalues of the
Bifurcation analysis; Jacobian Matrix. The bifurcation analysis was also performed, in which the
Arowana fish; harvesting rate has been chosen as a critical parameter. The results found three
Prey-predator,; equilibrium points, and the stability condition of these equilibria was analysed.
Harvesting. It turned out that the model undergoes a transcritical bifurcation. Time series

and phase portrait were also plotted to see the changes of dynamics for both
populations for different values of harvesting parameter. Thus, this research is
important to raise awareness on the need to control fishing behaviour so that
the Arowana population can be sustained in the future.

2020 Mathematics Subject Classification: 37G05, 37C75 © UMT Press

INTRODUCTION

The Asian Arowana fish (Scleropages formosus), also called “dragon fish”, is one of the most
valuable aquarium fish in the world. The name “dragon fish” comes from its long, narrow body
with enormous scales and long, whisker-like chin barbels. In Chinese culture, it is considered a
most auspicious fish that brings good luck and prosperity to its owner. The Chinese also believe
Arowana are descended from a mythical dragon, which are highly valued in the culture [1]. The
average lifespan of pet Arowana is about 10 to 15 years, and co go up to 20 years if the owner take
exceptionally good care of it. The lifespan of wild Arowana are believed to be more than 20 years
[2]. Many researchers have studied Arowana [3-5].

According to Yue et al. [6], this species is highly endangered and has been listed under
Appendix I of CITES since 1975. Even though there are legal fish farms that breed Asian Arowana,
the population trend of the species is still decreasing. Other than the overfishing and habitat loss
in the mid-70s, there are many other factors that threaten Asian Arowana, such as its reproductive
method and its spawning in open water.

Numerous studies have examined mathematical models for fish harvesting. Zhang et al. [7]
examined a model of prey dispersal in a two-patch ecosystem, where there is supposed to be a zone
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designated for free fishing and another for reserved use, where fishing and other extractive activities
are prohibited. They only address the dynamics of the system in the closed first quadrant in their
article. They solved the algebraic equations that come from equating the left-hand derivatives to
zero in order to discover the equilibria. As a result, they were able to determine three potential
equilibria, two of which involved no predators.

Meanwhile, Lv et al. [8] considered a prey-predator model with harvesting for fishery resources
within a reserve area. They solved the model to find the equilibria and analysed the stability of
then equilibria, then analysed the bionomic equilibrium. They also discussed the optimal harvesting
policy. Three equilibria were found and stability analysis was performed on the equilibria using
Jacobian Matrix. The authors gave stability criteria of the model both from the local and global
points of view. They found that over-harvesting would result in extinction of the population in the
absence of the reserved zone, but both prey and predator species will coexist within a reserved zone
because of the sustainability of the system.

Triharyuni and Aisyah [9] formulated a prey-predator model with harvesting of predator
species, namely the interaction between Arowana fish with small fish. They found that the maximum
harvest rate of Arowana was 0.0615 and the simulation indicated that it was necessary to restrict the
exploitation of predatory fish to maintain its sustainability. It has been suggested that a prey-predator
model involving the harvesting of both species within a conservation area, be conducted.

In 2018, the Pontryagin’s maximum concept was used in the fish prey-predator model with
harvesting strategy by Belkhodja ef al. [10] and Manna ef al. [11]. It is interesting to note that
the Manna ef al. [11] model showed the schooling behaviour of fish populations that include both
predator and prey. As a result, interactions between predators and prey happen at the boundaries of
all populations. After computing equilibrium points, Hopf bifurcation in the system was discovered.

In 2019, the dynamics of a fisheries model with two prey and one predator were examined by
Raymond et al. [12]. Nile perch was the predator, whereas cichlid and tilapia fish were the prey.
All three populations subject to harvesting impact. Proof of both local and global stability was
provided to demonstrate the system’s resilience. Their research revealed that the three populations
were sustainable only if overharvesting of tilapia and cichlid fish is avoided, as those populations
are the primary drivers of the Nile perch fish population’s expansion.

Laham et al. [13] discussed the fish harvesting management strategies using logistic growth
model for tilapia fish. The two logistic models are constant harvesting and periodic harvesting.
Periodic harvesting is the optimal harvesting approach for the chosen fish farm. In order to fulfil the
demand for tilapia fish, these discoveries can help fish farms boost t supply.

In this study, we aimed to consider a simple model of prey-predator for wild Asian Arowana fish
and its prey fish. This work is motivated by Triharyuni and Aisyah [9] in which we modified their
model from nonlinear functional response to linear response [14]. Although the model presented
here is a simplification of the previous model done by [9], the novelty of this research is highlighted
by performing bifurcation analysis, which can supplement the previous work. The objectives of
this research are to obtain equilibrium points and to analyse the stability of the equilibrium points.
Additionally, we will perform bifurcation analysis for the modified model in which the harvesting
parameters of the Arowana are varied.
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Mathematical Model

We consider a mathematical model which is modified from Triharyuni and Aisyah [9]. By removing
the ratio part, we obtain the following system of ordinary differential equation:

— = caxy —my — hy, O
dt

where the symbols of the above equations are described in Table 1. Concurrently, the flow diagram
in Figure 1 shows the illustration for model (1). All parameters considered are positive constants.

Table 1: Description of variables and parameters of model (1)

Variable Description
X The prey fish population
y The Arowana fish population
Parameter Description
r Growth rate of prey fish
k Carrying capacity of both species
m Mortality rate coefficient of Arowana

Conversion factor from the number of calories required

¢ by the new Arowana fish for each prey small fish caught
o Coefficient prey fish predation by Arowana fish
h Harvesting rate of Arowana fish

x
rx(1 _E)

Arowana fish Harvest by

human

y(t)

Mortality

Figure 1: Interaction diagram between Arowana and prey fish
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Equilibria Analysis

Equilibrium points are useful for predictions in mathematical modelling. A dynamical system
might have more than one equilibrium point. Generally, a nonlinear system produces more than
one equilibrium point. The more equilibrium points (i.e., equilibria) we have, the more complex
behaviour dynamics we could obtain. Our research considers a nonlinear system of prey-predator
interaction model.

To obtain the equilibria, we solve the system by letting the system (1) equal to zero.

dx _ (1 X) -0
e X o) Ty =
@ _ hy =0
g — caxy —my —hy =
Therefore, we found a total of three equilibrium points:
E, = (0,0),
EZ = (k, 0),

)

E _(m+h r(cak—h—m))
7\ ca cak '

The equilibrium point means extinction for both populations, while means only the population
of small fish survive. £, and E, are called trivial equilibria. The only nontrivial equilibrium point is
E., in which both populations live together in harmony.

Local Stability Analysis for Equilibria

In this section, we analyse the stability of the equilibria by using Jacobian Matrix and determining
the eigenvalues. This step is important to reduce the nonlinear system to linear so that the model can
be easily analysed.

The general Jacobian Matrix’s formula is given by:
d0x 0x dy dy

(x*l * = a3, a. a4

~lox ay ox ay I

Hence, the Jacobian Matrix for model (1) is obtained as:

*

2rx
k

Jx%y") = [r -

—ay* —ax*cay* cax* —m — h].

Then, the Jacobian Matrix is evaluated at each equilibrium point. The Jacobian matrix for the
first equilibrium point E| is:
2r(0)
Jg, =|r— % a(0) — a(0) ca(0) ca(0) —m—nh |,

Jg, =[r00 —m—nh].
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To find the eigenvalue, we evaluate the determinant of (J - A1)=0:

det det (Jg, — AI) = 0,
r—2)(m-h—-2)=0.
Therefore, 4, =r and A, = - (m + h). Since, A, > 0, therefore £, (0,0) is always unstable. This

means that the extinction for both prey fish and Arowana fish will not happen in the future.

For the second equilibrium point, E, = (k,0), the Jacobian matrix is:

2r(k)
Je, = |r ===~ a(0) —a(k) ca(0) ca(k) ~m—h |,

Jg, =[=7 —ak0cak —m—h],
By taking the determinant,
det det (J;, — AI) = 0,

(=r—=MN)(cak—m—h—21)=0.

Therefore, A, = -r and A, = cak -~ (m + h). For this equilibrium point to be stable, both A, and
A, must be negative, which implies A, < 0 and 4, < 0. So, cak - (m + h) < 0 and the condition cak
< (m + h) must be fulfilled. Otherwise, if cak > (m + h) , then E, will be unstable. E, (k, 0) means
the small fish will grow until carrying capacity while Arowana fish become extinct. The stability of
E, is given by:
i if > 0 and cak < (m + h), then E, is asymptotically stable,
ii. if <0 and cak > (m + h), then E, is unstable,

. and if r > 0 and cak > (m + h), or r <0 and cak < (m + h), then E, is saddle where saddle
implies unstable.

Finally, the Jacobian matrix for can be given as follows:

m+h
cak

]E3 =

[T_Zr(mc';h) :;(1_m_+h))_ m+h

r m+h
k - cak a( ca ) Ca(g(l B )) ca( a

C

)—m—hl.

By taking the determinant:
det det (Jz, — AI) = 0,

det det ([—r(mﬂl) —m:h rc(l—m+h) 0]—1[1001]) =0,

cak cak
r(m+h) m+h m+h
detdet | |— -1 - rc(l— )—/’1 =0,
cak c cak

e

() -1 ) () -
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We obtain
a 1 r(-m—h) +VA4
L) cak ’
and
5= 1(r(m+h)+VA
) cak ’

where A =-4c* a? k? hr - 4¢? a* k* mr + 4cakh? r + 8cakm? r + h? r2 + 2hmr? + m? r>. We need
to check for both 4, and 2, and as they can be both negative or positive values, or one of them is
positive. For example, the condition to have a stable equilibrium point is that both 4, and 4, and
must be negative. If one of them is positive, or both are positive, then E, will be unstable. For this
third equilibrium, E, means that both small fish and Arowana fish will coexist or not depending on
these conditions. The conditions of £, can be given as:
1. if A, 4,<0, then E, is asymptotically stable,
1i. if 2,, 4, <0, then E, is unstable,
1il. if A,>0and4,<0,0r 1, <0and4,>0, then E, is saddle, which implies unstable.

Global Stability Analysis for Coexistence Equilibrium Point E, (x*, y*)

In this section, we use the Lyapunov function approach to understand the global stability behaviour
of the coexisting equilibrium E,. One possible choice for the system (1) is a quadratic Lyapunov

function: 1
Vioy) =5 6% +y9,

The derivative V (x, y) of along the trajectories of the system can be computed as:

av 6de+ avdy
dt dxdt dydt
Thus,

= @ [rx () - x| + Oleaxy ~ my ~ yl

Simplify the above to get:

av 2[ <l—x> ]+ 2 h

ikl A ay| + y?[cax —m ,
ie.

av 1—x

L — 2 — — y2 —

I x [ay r( 7 )] y*[h + m — cax].

Hence, V (x, y) is a Lyapunov function provided that [ay -r ( 7

x
)] and [ + m — cax] are
positive on some neighbourhood of coexisting equilibrium E,(x*, y*). With these conditions, we can

conclude that the equilibrium E; is globally asymptotically stable.
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NUMERICAL RESULTS

In this section, we discuss the numerical results of stability of equilibria for model (1). The software
used are Maple and XPPAUT.

Stability of Equilibrium Point of Modified Model
Recall that for model (1), we obtained three equilibrium points, which are E, (0,0), E, = (k,0), and

3 ’ cak

E = (m thr <1 _mt h)) The set of parameter values used here were referred from [9] which
ca 'a

are given by: r=0.8, k=100, ¢ = 0.75, m = 0.001, ¢ = 0.01 and 4 = 0.02. Thus, the value of each

equilibrium point after input of parameter values is given in Table 2.

Table 2: Equilibrium points of modified model

e . . The Prey Fish The Arowana Fish
Equilibrium Point . .
Population, x Population, y
E, 0 0
E, 100 0
E 2.80 71.76

Since there is no negative value in any of these equilibrium points, hence we considered these three
equilibrium points in the analysis.

The general Jacobian Matrix of the modified model is:

= *)—[08 16x*
JOyT) =108 =1555

—0.01y —0.01x* 0.0075y* 0.0075x* — 0.021 ]

The eigenvalues obtained for each equilibrium point is shown in Table 3.

Table 3: Eigenvalues of equilibrium points

Equilibrium Point Eigenvalue Stability
E A,=0.800 Unstable
A,=-0.021
E, Unstable
A,=0.729
A,=—0.800
E, A,=-0.0112 +0.1272955616 i Asymptotically stable

A,=—0.0112 —0.1272955616 i

Since the eigenvalues for £,and E,have both positive and negative values, these two equilibrium
points are unstable. As for £, since the eigenvalues are a pair of complex conjugate with negative
real number parts (— 0.0112), it implies that the point is asymptotically stable. In the next section,
we investigate the stability changes as the parameter of harvesting is varied.
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Bifurcation Analysis for Harvesting Parameter

In this section, we employ bifurcation analysis to study the changes of stability for equilibria E,and
E,. Figure 2 shows the result of bifurcation diagram by using XPPAUT software for Arowana fish
against harvesting parameter /. The red and black lines correspond to stable and unstable equilibria
respectively. The range considered is for h € [0,2]. This range is chosen since it is assumed that the
highest rate of harvesting is 2. 2 = 2 means that every year, the number of Arowana fish captured is
twice as much from previous year, due to high demand from humans.
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Figure 2: Bifurcation diagram of Arowana fish population (y) against harvesting rate (/)

In Figure 2, the bifurcation point occurred at # = 0.749 (marked by a full shaded circle).
The diagram is divided into two Regions, I and II. In Region I (0 </ < 0.749), the coexistence
equilibrium E, is stable. However, as the harvesting parameter increases, the Arowana population
decreases. On the other hand, the equilibrium E, is unstable in this region.

Moving on to Region 11, after the bifurcation point, for 0.749 < h <2, coexistence equilibrium
is no longer stable. During this time, the extinction equilibrium is now stable. This means that if
there is high harvesting effort by humans, the population of Arowana is zero, which indicates the
extinction of this population. Therefore, since both equilibria change their stability at the bifurcation
point, we call this type of bifurcation transcritical bifurcation. To clearly see the changes of stability,
we show the results for different values of harvesting parameter in Table 4.
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Table 4: Stability of equilibria for different values of harvesting parameter

Critical

Equilibrium Point Eigenvalues Stabili
Parameter, / q & ty
A1=0.149
E,=(100,0) Saddle
A2=-0.8
h=0.6
A1=-0.23555
E,=(80.13,15.89) Stable
A2 =—40552
A1=0.049
E2>=(100,0) Saddle
A2=-0.8
h=0.7
A1=-0.05272
E3=(93.47,5.23) Stable
A2 =—-69502
A1=-0.051
E2=(100,0) Stable
A2=-0.8
h=0.8
A1=0.0482
E3=(106.8,-5.44 Saddle
A2=-0.90267
A1=-0.151
E2=(100,0) Stable
A2=-0.8
h=0.9
A1=0.13268
E3=(120.13,-16.12) Saddle
A2=-1.09375

After we input the critical parameter with different values, we observed that there are significant
changes of stability for the equilibria. The critical parameter does not affect stability of first, but
it shows that both second and third equilibria change their stability. We can conclude that as the
harvesting rate of Arowana fish increases, the population of prey fish stablises while population of
Arowana fish decreases. In other words, when harvesting rate is lower, the population of Arowana
fish is stable and higher, and, therefore, affects the population size of prey fish due to the number of
its predators increasing. We also show the dynamics for both populations in forms of time series and
phase portrait plots in Figures 3 and 4, for low harvesting (% = 0.6) as well as for high harvesting
(h=0.8).
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Figure 3: Time series and phase portrait for 2= 0.6

Journal of Mathematical Sciences and Informatics, Volume 4 Number 1, June 2024, 1-11



Yong Huay Xi and Ummu Atigah Mohd Roslan 10

100

80 Hl

40

60
Population

40 \ =
b = —

20 b \ \\

0 20 40 60 80 100
1

= small fish === arowana 0 50 100 150
X

Figure 4: Time series and phase portrait for # = 0.8

Conclusion

We had modified the prey-predator model of Thiharyuni and Aisyah [9], and we obtained three
equilibrium points. The stability for each equilibrium points had been analysed and it was proved that
the survival or extinction of the Arowana population depends on certain conditions. Moreover, as we
vary the harvesting rate on the Arowana, the results showed that the model undergoes a transcritical
bifurcation, in which the stability changes between the survival and extinction equilibria. For low
harvesting, the population of Arowana could survive, while for higher harvesting effort, the species
will die out in the future. We also discussed the dynamics of our model using time series and phase
portrait. They showed that the behaviour of prey fish and Arowana fish can influence the population
size of each other.
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