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In the realm of stratifiable spaces and their continuous mappings into 
themselves, a construction ¢ within the domain of Coty, known as the test 
space, defines a covariant functor within this category. This construction Z 
defines a functor Z:S→S, which allows each stratifiable space X to be immersed 
in a closed manner into some other space Z(X), which is a stratifiable space 
with “good” functorial, geometric and topological properties. It is shown that 
the functor Z:S'→S' is a normal, open and monadic functor in this category 
S of stratifiable spaces and continuous mappings into itself. Furthermore, an 
exploration of the dimensional properties of the space Z(X) is conducted for the 
stratifiable space X, defined for each n∈N+ subfunctor Zn:S→S of the functor 
Z, for which the dimension  satisfies the inequality: dim Zn(X) ≤ n dim X+n-1. 
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INTRODUCTION 
A simplicial complex is defined as a set K for which its representation is fixed in the form of a union 
of some family of closed simplices, each two of which are not intersected, either one of them is a 
face of the other, or is intercepted by a simplex that is a face of each of them. The set K itself is called 
the body of the complex under consideration. In the presence of a complex, its body is uniquely 
determined, but one and the same set can be the body of various complexes. A simplicial complex 
is called complete if the complex K by an arbitrary given simplex σ∈K also contains all the faces 
of this simplex.

Let K be a simplicial complex. By K(n), we denote the set of n-dimensional simplices (skeletons) 
of the simplicial complex K. |K| is a polyhedron, i.e.|K|= ∪ K in weak topology.

For each simplex σ∈K, the barycentre, the interior and the boundary of the simplex σ are 
denoted by σ, σ and ∂σ, respectively. A simplex, whose vertices are ϑ1, ϑ2,...,ϑn, is denoted by < ϑ0, 
ϑ1, K,ϑn>. Thus, τ ≤ σ (τ < σ) implies that τ is an integral part (facade or component) of the simplex 
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σ. For each point x∈|K| through (x(σ) of the simplex σ∈K, the barycentric coordinates with respect 
to the barycentre of the SdK subdivision are denoted.

A simplicial subdivision of a simplex σ∈K is a family P = {σi:i = 1,k} of simplices in K satisfying 
the following three conditions:

a) σ =        σi ;
b) For any i, j ≤ k, the intersection Si ∩ Sj is either empty or is a common face of the simplices   
     σi and σj.
c) For i = 1,2,...,k, all faces of the simplex σi belong to P.

The fineness of the simplicial subdivision {σi:i = 1,k} of the simplex σ is defined as the largest 
among the numbers δ(σ1), δ(σ2),...,δ(σk). For each simplex σ = a0, a1,...,am, the point 

                          
 
is referred to as the barycentre (or centre of gravity) of the simplex σ. It is evident that b(σ)∈σ, and 
b(σ) do not belong to any (m -1)-dimensional face of the simplex σ.

Consider an arbitrary simplex σ = < a0, a1,...,am>. For each decreasing sequence σ0 ⸧ σ1 ⸧...⸧
σk of different faces of the simplex σ, the points b(σ0), b(σ1),..., b(σk) are linearly independent. The 
family Π of all simplices of the form < b(σ0), b(σ1),..., b(σk) > will be a simplicial subdivision of the 
simplex σ. Each (m-1)-dimensional simplex T∈ Π is a face of one or two m-dimensional simplices 
of the family Π, depending on whether the simplex is contained or not T in some (m-1)-dimensional 
face of the simplex σ. This particular simplicial subdivision, as described above, is referred to as the 
barycentric subdivision of the simplex σ.

Consider a number t∈ [0,1] and σ(t) = {x∈σ: 0 ≤ x(σ) ≤ t,(x(σ)) are barycentric coordinates 
of the point x}. For each t∈[0,1], the set σ(t) is an open neighbourhood of the boundary ∂σ of the 
simplex σ, and σ(t) = clσ σ(t). Note that σ(1) = σ \{σ}.

Each point x∈σ (1) can be expressed as as: 
  

where πσ(x)∈∂σ and πσ (x): σ(1) → ∂σ is a radial projection for each σ∈K. Furthermore, each point 
x∈υ0,υ1,...,υn can be written as:
                                                            x =     b(υi)υi,

where υi∈K0, and b(υi) represent the barycentric coordinates of the point x.

MAIN PART
Let X be a topological space, and |F(X)| be a complete simplicial complex whose vertices are points 
of X, i.e. |F(X)0|= X. The space |F(X)| is equipped with the weak topology. Now, a topology on the 
space |F(X)| is defined, denoting the basis of open sets as Z(X), which consists of W open in F(X), 
and satisfy the following conditions:

o1.  W ∩ X open in X;
o2. |F(W ∩ X)|⊂ W;
i.e. τZ(X)= {W∈τ|F(X)|: W satisfies the conditions o1-o2}.
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Condition o2 means that every simplex σ∈F(X) is contained in W if all vertices of this simplex 
σ  lie entirely in W ∩ X.

For the subset A ⊂ X, the set F(A) is a subcomplex of the full complex F(X) and Z(X) is a 
subspace of the space Z(X). Obviously, Z(A) is closed in Z(A) if  is closed in X.

For each n∈Z+= N    {0}, define Zn(X) = |F(X)n|, which is a subspace of Z(X). Then, Z0(X) ≅ X  
and Z(X) =        Zn(X). It is evident that for any n∈Z+, the subspace Zn(X) is closed in Z(X).

Let us introduce the following notation:
  T(A) = {σ∈F(X)\ F(A): σ ∩ A ≠ ∅};
M(A) = {x∈Z(X): there exists σ∈F(A) such that x(σ) < 0};
  Tn(A) = T(A)∩(F(X)n\F(X)n-1);
  Mn(A) = Z(A)    (M(A) ∩ Zn

 (X);

For each ε∈(0,1)T(A) and for each n∈N, we define the set: 
  M(A,ε) =    n∈Z  Mn(A,ε),
where M0(A,ε) = Z(A) = |F(A)| and 

  Mn(A,ε) = Z(A)   {σ(ε(σ))∩ πσ
-1(Mn-1(A,ε)):σ∈Tn(A)}.

Then the equality Mn(A,ε) ∩ X = A holds.
For each open set U of the space X, the set M(U,ε) is open in Z(X). In this case, the family B(M) 

= {(U,ε):U is open in ε∈ (0,1)(U)} is an open base of the space Z(X).
Therefore, if for every n∈N and every ε∈ (0,1)T1 (A)∪T2(A)∪...∪Tn(A), the set Mn(A,ε) is defined, then 

the family B(M) = {(M1, (U,ε)}:U is open in X and ε∈ (0,1)T1 (U)} is an open base for Z1(X), i.e the 
following holds.
Lemma [5]. Families {M(U,ε):U is open in X and ε∈(0,1)T1 (U)} and {(M1, (U,ε)}:U is open in X and   
ε∈(0,1)T1 (U)}is the base of the space Z(X), (respectively, the space Z1(X)).

Let A ⊂ X, then the subspace Z(X)\ Z(A) of the space Z(X) consists of points of the form: z = 
(1-t)x + ty, where x ∈ Z(X\A), y ∈ Z(A), t∈[0,1), i.e.

Z(X)\Z(A) = {z = (1-t)x+ty ∈ Z(X): x ∈ Z(X\A),y ∈Z(A),t∈[0,1)}.

Obviously, if the set A is closed in X, then Z(A) is closed in Z(X). It should be noted that the set  
itself is also closed in Z(X), i.e. X; Z1(X).

Note that for z∈Z(X), based on the structure of the space Z(X), the point has the form: z = m0 
x0+ m2 x2+...+ mnxn, where ∑    mi = 1, mi ≥ 0, and xi ∈ X. In other words, the point z belongs to the 
simplex σ = < x0, ..., xn > , whose vertices are points xi of space X, denoted by x0, x1,..., xn, which are 
the points (vertices) of the simplex σ = < x0, ..., xn >.

If z∈Z1(X), then the point z has the form z= x, where x∈X. Hence, for each point z∈Z(X)\Z1(X) 
there exists a simplex σ∈Z(X) such that z∈σ =<x0,x1,...,xn> and z =∑    mi xi,mi >0, and ∑    mi=1. 
The vertices of the simplex σ = < x0, x1, ..., xn > are referred to supports of the point z∈σ, i.e. suppz 
= {x0,x1,...,xn}.

∩
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In this case, there exists at least j1 and j2 ∈ 0, n such that mj1≠ 0 and mj2≠ 0, indicating that the 
point z∈Z(X)\Z1(X) has at least two points in its support. Therefore, if z∈Z(X)\Z1(X), then |suppz|≥2. 
On the other hand, given the construction of the space Z(X), for any n∈N, there is a point z∈Z(X) 
such that |suppz| ≥ n. If z∈Zn(X), then |suppz| ≥ n.

In the paper [1] by R. Coty, it was demonstrated that the space Z(X) is stratifiable (in short, a 
S-space) if and only if X is a S-space.

Let f:X→Y be a continuous mapping between the S-spaces X and Y. The continuous mapping 
Z(f):Z(X)→Z(Y) is defined as follows: for each point z∈Z(X) and z∈〈x0,...,xk〉 

zx= m0 x0+...+ mk xk, ∑mi=1, mi ≥ 0 assign point zy∈Z(Y), zy= 〈y0,..., yk〉 zy= m0 y1+ m2 y2+...+ mk 
yk,where f(xi) = yi.

The mapping Z(f):Z(X) → Z(Y) is simplicial. Therefore, Z(f) is continuous. Note that Z(f)(Z(X)) 
= Z(f(X)) and Z(f)(Z(X)\X) ⊂ Z(Y)\Y. Hence, if the mapping f:X →Y is surjective, then Z(f):Z(X)→ 
Z(Y) is also surjective and vice versa.
a)  If idx: X→X is the identity mapping, then Z(idx): Z(X) →Z(X) is also the identity mapping, i.e. 

Z(idx) = idz(x)  .
b)  Let p: X→Y and g: Y→L be continuous mappings between the stratifiable spaces X,Y and L.
 If f = g ◦ p: X→L, where the diagram 
 
 (1)

 is commutative, then Z(f) = Z(p ◦ g): Z(X) → Z(L), which is the diagram 

 
 (2)
 is also commutative. Hence, we see that the mapping Z:X→Z(X) forms a covariant functor between 
stratifiable spaces and their continuous mappings.

If f = p ◦ g, then Z(f) = Z(p ◦ g) = Z(p) ◦ Z(g). Hence, the mapping of the stratifiable space Z: 
X→Z(X)  is functorial. Each mapping f: X→Y can be associated with the above defined simplicial 
mapping Z(f):Z(X) →Z(Y). From properties a) and b), we can assert that this mapping Z is a covariant 
functor on the category of  S- spaces and continuous mappings into itself.
Thus, the following is true:

Theorem 1.  is a covariant functor.
Note that the functor Z: S→S has the following properties:
1°. From the construction of the space Z(X) and Lemma [5], it follows that the functor Z: S→S 
preserves the entire space ω(Z(X)) ≤  ω(X), i.e. ω(Z(X)) ≤  ω(X).
2°. For X∈S, the mapping or embedding ηz: X→Z(X) is constructed by defining η(X) = 〈x〉, where 
x∈Z(X), and x is vertex, i.e. x is a zero-dimensional simplex in Z(X). The mapping η: X→Z(X) is 
continuous and one-to-one, implying that ηz: X→Z(X) is an embedding.

k

k =1
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An immediate check shows that the functor Z: S→S preserves
3°. a point and an empty set;
4°. intersection of closed sets;
5°. preimages of mappings;
6°. continuous in the sense of Shchepin [2];
7°. monomorphic; and,
8°. epimorphic.

Note that the functor Z: S→S with finite supports does not have finite degrees. Hence, the 
functor Z: S→S  preserves a point, an empty set, intersections of closed sets, and inverse images of 
mappings. It is continuous, epimorphic, and monomorphic, i.e. the functor Z: S→S is normal.

For each n∈ N+ defube Zn(X) = {z∈ Z(X)}: |suppz| ≤ n-1}, where zx = ∑ mi xi, suppzx={x0, 
x1,...,xn}, ∑    m1 = 1, mi ≥ 0, suppzx ⊂ X.

a)  The set Zn(X) is closed in Z(X);
b)  for n = 0, Z0(X) ≅ X;
c)  for each mapping f: X→Y between S spaces, the mapping Zn(f):Zn(X)→Zn(Y) is defined as 

follows: Zn(f) = Z(f)|zn(x): Zn(X)→ Zn(Y).

The mapping Zn(f):Zn(X)→Zn(Y) is also continuous, i.e. Zn: S→S is a subfunctor of the functor  
Z. The functor Zn: S→S possesses all properties of the functor Z: S→S. Functor Zn: S→S is a functor 
with finite n-supports.
Since the mappings Z(f) and Zn(f) are simplicial, we can assert:
Theorem 2. A mapping f: X→Y between S-spaces is open if and only if Z(f): Z(X)→Z(Y) is open (or  
Zn(f): Zn(X)→Zn(Y) is open).

The following is easily proved.

Theorem 3. A map f: X→Y between S-spaces mapping Z(f): Z(X)→Z(Y), Zn(f): Zn(X)→Zn(Y) is a 
homeomorphism if and only if is a homeomorphism.
Note that the covariant functors Z: S→S and Zn: S→S is a normal functor.

A monad (or triplet) on the category G is a triplet T = <F,ψ,η>, where  F:G→G is a functor η: 
Id→F (unit) and ψ:F2→F (multiplication) are natural transformations. Additionally, for each object 
X, the following equalities are satisfied:

A functor F is called monadic if it can be included in some monad.
Theorem 4. The covariant functor Z: S→S is monadic.

n

i = 0n
i= 0
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Proof. As previously mentioned, the mapping η: Z(X)→Z(Y)  which assigns to each point x∈X the 
vertex x of the simplex in Z(X) is continuous, i.e. η(x) = x.

Let z∈Z(Z(X))=Z2(X). Then the point z has the form z = ∑ μi zi, where zi∈Z(X),

mapping ψ∈Z(Z(X))→Z(X) is defined. The mapping Ψx is continuous because Ψx is linear.  

A simple check shows that for the triple Z=Z,Ψ,ηX satisfies the following conditions:
(a)  ΨX ◦ Z(ηX) = idZ(X);
(b)  ΨX ◦ ηZ(X) = idZ(X);
(c)  ΨX ◦ Z(ΨX) = ΨX ΨZ(X);

Z: S→S functor, ηZ: id→Z (one) and Ψ: Z2→Z (multiplication) natural transformation. Hence, the 
triple T = 〈Z, Ψ, ηX〉 is monadic. Theorem 4 is proved. 

Theorem 5. For any stratifiable space X, the space Z(X) is convex and the subspace Z∇(X) is 
homotopically dense in Z(X).

Proof. Let X∈S. Two cases are possible : a) X is finite. b) X is infinite. In case a) the space Z(X)  
consists of one simplex σ = <x0, x1,..., xn>. This simplex σ is convex and the subspace Z∇(X) = Z(X)  
\X = σ\{x0, x1,..., xn} is homotopy and dense in Z(X). Let X be infinite. In this case, the space Z(X) is 
convex. Indeed, for any points z0∈Z(X), z1∈Z(X), the segment [z0,z1] lies entirely in the space Z(X), 
i.e. [z0,z1] ⊂ Z(X). Now we can that the subspace Z∇(X) is homotopically dense in Z(X).

We construct the desired homotopy h(z,t):Z(X)×[0,1]→Z(X) supposing h(z,t) = (1-t) z+t·z0, 
where z∈Z(X), t∈[0,1], z0= m0 x0+...+ mn xn,∑     mi=1, mi > 0, mi ≠ 0.
If t = 0, then h(z,0) = (1-0) z + 0 · z0 = z, i.e. h(z,0) = idz(x).

If t ∈(0,1], that is, t > 0, t ≤ 1, then the point h(z,1) = (1-t) z+t · z0 ∈ Z1 (X), i.e. h(z,0) = idz(x), 
i.e. point h(z,1)∈ Z∇(X). This means that the subspace Z∇(X) is homotopically dense in Z(X). The 
theorem is proved. 

A subset A ⊂ X of the space X is said to be homotopically dense in X [9] if there exists a 
homotopy h:X × [0,1] →X such that h(x,0) = idx and h(X × (0,1]) ⊂ A. Therefore, the subset A ⊂ X is 
called homotopy negligible [9] if the complements X\A is homotopy dense in X. The above theorem 
implies.
Corollary. For any stratifiable space X, the space Z1(X) itself is homotopically negligible in Z(X) 
Theorem 6.  Let X be a finite-dimensional St-space. Then Zn(X) is a finite-dimensional St-space. 
Moreover, the inequality dim Zn(X) ≤ dim Xn + n-1 ≤ n dim X + n-1 is true.

Proof. Let X be a St- space and dim X < ∞. Note that for any n∈N the space Zn(X) is also St-a 
space, therefore, Zn(X) is a perfectly normal paracompact space. It follows from the results of [8,10] 
that

k

k =1

n
i =1
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  dim Xn × σ n-1 ≤ dimXn+dim σn-1 ≤ n dim X+n-1
Through induction on n, =
                            dim Zn(X) ≤ n dim X + n-1                                                   (3) 

For n = 1, this inequality (3) is valid, since the space Z1(X) is homeomorphic to X by definition. those 
Z1(X); X.
Let the inequality dim Zn-1 (X) ≤ (n-1) dim X  + dim Zn-1 (n-1). The theorem is proved.

First, it is demonstrated that rdZn(X)\Zn-1 (X)) ≤ n dim X + n -1, where rdXA is the relative 
dimension of the subspace A in the space  [7]. The subspace Zn(X)\Zn-1(X) is also St- space, hence 
it is paracompact. The space Zn(X) at the points of the set Zn(X)\Zn-1(X) is locally homeomorphic to 
the open subspace of the product Xn × σn-1. From Theorem 21 of [7] Dowker-Nagami we obtain that 
rdZn(X)(Zn(X))\Zn-1 (X)) ≤ n dim X + n-1.

Then, applying another Dowker’s theorem 10 [7], we obtain that
dim Zn(X) ≤ n · dim X + n-1.

The theorem 6 is proved. 
A space X is weakly star countable if for each open cover U of X there exists a countable subset 

F of X such that (    x∈F St(x,U)=X . 

Theorem 7. If X is a weakly countable St-space, then Zn(X) is also weakly countable.

Theorem 8. For any weakly countable or finite-dimensional St-space, the space Z(X) is weakly 
countable.

Theorem 9. For any infinite St- space X, the space Z(X) is infinite-dimensional.
Definition.  For the subset  of the normal space X, we write [7] rdXA ≤ n (relative dimension A in X 
≤ n), if for any set F lying in A and closed in X the inequality dim F ≤ n, n = -1, 0, 1, 2, ... .
Theorem 10 [7]. If in the normal space X there exists a closed set F such that dim F ≤ n and rdX 
(X\F) ≤ n, then dim X ≤ n.
Theorem 11 [7].  For paracompact the following is always true 
  

loc dim X=dim X

Definition [7]. For a normal space X, we assume loc dim X ≤ n if for any point x∈X there exists a 
neighborhood Ox for which dim[Ox] ≤ n, n = 0, 1, 2, ... . (For empty X we get loc dim X = -1).
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