PENERBIT UMT Menjana Khazanah Mmuwan Journal of Mathematical Sciences and Informatics Journal Homepage: https://journal.umt.edu.my/index.php/jmsi eISSN: 2948-3697 DOI: http://doi.org/10.46754/jmsi.2023.12.003

FUNCTORIAL PROPERTIES OF THE SPACE Z(X) FOR STRATIFIABLE SPACES

ZHURAEV TURSUNBOY1*, ZABIDIN SALLEH2, NURILLAEV MUZAFFAR3

¹Faculty of Physics and Mathematics, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan; tursunzhuraev@mail.ru. ²Special Interest Group on Modelling and Data Analytics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; zabidin@umt.edu.my. ³Faculty of Physics and Mathematics, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan; nurillaev_muzaffar@mail.ru

*Corresponding author: tursunzhuraev@mail.ru

ARTICLE INFO	ABSTRACT
Article History:	In the realm of stratifiable spaces and their continuous mappings into
Received	themselves, a construction ¢ within the domain of Coty, known as the test
27 JUNE 2023	space, defines a covariant functor within this category. This construction Z
Accepted	defines a functor $Z:S \rightarrow S$, which allows each stratifiable space X to be immersed
9 OCTOBER 2023	in a closed manner into some other space $Z(X)$, which is a stratifiable space
Available online	with "good" functorial, geometric and topological properties. It is shown that
25 JANUARY 2024	the functor $Z:S' \rightarrow S'$ is a normal, open and monadic functor in this category
	S of stratifiable spaces and continuous mappings into itself. Furthermore, an
Section Editor:	exploration of the dimensional properties of the space $Z(X)$ is conducted for the
Zainidin Eshkuvatov	stratifiable space X, defined for each $n \in N_+$ subfunctor $Z_n: S \to S$ of the functor
	Z, for which the dimension satisfies the inequality: $\dim Z_n(X) \le n \dim X + n - 1$.
Keywords:	
Stratifiable space;	
simplex;	
dimension;	
category;	
covariant functor	
2020 Mathematics Subject Classification:	
54B15, 54B20, 54A25, 54B	30, 54C15, 54C60, 54O30 © UMT Press

INTRODUCTION

A simplicial complex is defined as a set *K* for which its representation is fixed in the form of a union of some family of closed simplices, each two of which are not intersected, either one of them is a face of the other, or is intercepted by a simplex that is a face of each of them. The set *K* itself is called the body of the complex under consideration. In the presence of a complex, its body is uniquely determined, but one and the same set can be the body of various complexes. A simplicial complex is called complete if the complex *K* by an arbitrary given simplex $\sigma \in K$ also contains all the faces of this simplex.

Let *K* be a simplicial complex. By $K^{(n)}$, we denote the set of *n*-dimensional simplices (skeletons) of the simplicial complex *K*. |K| is a polyhedron, i.e. $|K| = \bigcup K$ in weak topology.

For each simplex $\sigma \in K$, the barycentre, the interior and the boundary of the simplex σ are denoted by $\hat{\sigma}$, $\hat{\sigma}$ and $\partial \sigma$, respectively. A simplex, whose vertices are ϑ_1 , ϑ_2 ,..., ϑ_n , is denoted by $< \vartheta_0$, ϑ_1 , K, $\vartheta_n >$. Thus, $\tau \le \sigma$ ($\tau < \sigma$) implies that τ is an integral part (facade or component) of the simplex

25

 σ . For each point $x \in |K|$ through $(x(\tilde{\sigma})$ of the simplex $\sigma \in K$, the barycentric coordinates with respect to the barycentre of the S_{dK} subdivision are denoted.

A simplicial subdivision of a simplex $\sigma \in K$ is a family $P = \{\sigma_i : i = \overline{1,k}\}$ of simplices in K satisfying the following three conditions:

- a) $\sigma = \bigcup_{i=1}^{k} \sigma_i;$
- b) For any $i, j \le k$, the intersection $S_i \cap S_j$ is either empty or is a common face of the simplices σ_i and σ_i .
- c) For i = 1, 2, ..., k, all faces of the simplex σ_i belong to *P*.

The fineness of the simplicial subdivision $\{\sigma_i: i = 1, k\}$ of the simplex σ is defined as the largest among the numbers $\delta(\sigma_1), \delta(\sigma_2), \dots, \delta(\sigma_k)$. For each simplex $\sigma = \overline{a_0, a_1, \dots, a_m}$, the point

$$b(\sigma) = \frac{1}{m+1}a_0 + \frac{1}{m+1}a_1 + \ldots + \frac{1}{m+1}a_m$$

is referred to as the barycentre (or centre of gravity) of the simplex σ . It is evident that $b(\sigma) \in \sigma$, and $b(\sigma)$ do not belong to any (m - 1)-dimensional face of the simplex σ .

Consider an arbitrary simplex $\sigma = \langle a_0, a_1, ..., a_m \rangle$. For each decreasing sequence $\sigma_0 \supset \sigma_1 \supset ... \supset \sigma_k$ of different faces of the simplex σ , the points $b(\sigma_0), b(\sigma_1), ..., b(\sigma_k)$ are linearly independent. The family Π of all simplices of the form $\langle b(\sigma_0), b(\sigma_1), ..., b(\sigma_k) \rangle$ will be a simplicial subdivision of the simplex σ . Each (*m*-1)-dimensional simplex $T \in \Pi$ is a face of one or two *m*-dimensional simplices of the family Π , depending on whether the simplex is contained or not T in some (*m*-1)-dimensional face of the simplex σ . This particular simplicial subdivision, as described above, is referred to as the barycentric subdivision of the simplex σ .

Consider a number $t \in [0,1]$ and $\sigma(t) = \{x \in \sigma: 0 \le \hat{x}(\sigma) \le t, (\hat{x}(\sigma)) \text{ are barycentric coordinates of the point } x\}$. For each $t \in [0,1]$, the set $\sigma(t)$ is an open neighbourhood of the boundary $\partial \sigma$ of the simplex σ , and $\sigma(t) = cl_{\sigma} \sigma(t)$. Note that $\sigma(1) = \sigma \setminus \{\hat{\sigma}\}$.

Each point $x \in \sigma(1)$ can be expressed as as:

$$x = (1 - x(\hat{\sigma})) \pi_{\sigma}(x) + x(\hat{\sigma})\hat{\sigma},$$

where $\pi_{\sigma}(x) \in \partial \sigma$ and $\pi_{\sigma}(x)$: $\sigma(1) \to \partial \sigma$ is a radial projection for each $\sigma \in K$. Furthermore, each point $x \in v_0, v_1, ..., v_n$ can be written as:

$$x = \sum_{i=0}^{n} b(v_i) v_i,$$

where $v_i \in K^0$, and $b(v_i)$ represent the barycentric coordinates of the point *x*.

MAIN PART

Let X be a topological space, and |F(X)| be a complete simplicial complex whose vertices are points of X, i.e. $|F(X)^0| = X$. The space |F(X)| is equipped with the weak topology. Now, a topology on the space |F(X)| is defined, denoting the basis of open sets as Z(X), which consists of W open in F(X), and satisfy the following conditions:

- o1. $W \cap X$ open in X;
- o2. $|F(W \cap X)| \subset W;$
- i.e. $\tau_{Z(X)} = \{ W \in \tau_{|F(X)|} : W \text{ satisfies the conditions o1-o2} \}.$

Journal of Mathematical Sciences and Informatics, Volume 3 Number 2, December 2023, 24-31

Condition o2 means that every simplex $\sigma \in F(X)$ is contained in W if all vertices of this simplex σ lie entirely in $W \cap X$.

For the subset $A \subset X$, the set F(A) is a subcomplex of the full complex F(X) and Z(X) is a subspace of the space Z(X). Obviously, Z(A) is closed in Z(A) if is closed in X.

For each $n \in Z_+ = N \cup \{0\}$, define $Z_n(X) = |F(X)^n|$, which is a subspace of Z(X). Then, $Z_0(X) \cong X$ and $Z(X) = \bigcup_{n=0}^{\infty} Z_n(X)$. It is evident that for any $n \in Z_+$, the subspace $Z_n(X)$ is closed in Z(X).

Let us introduce the following notation:

$$T(A) = \{ \sigma \in F(X) | F(A) \colon \sigma \cap A \neq \emptyset \};$$

 $M(A) = \{x \in Z(X): \text{ there exists } \sigma \in F(A) \text{ such that } x(\hat{\sigma}) < 0\};\$

$$T_n(A) = T(A) \cap (F(X)^n \setminus F(X)^{n-1});$$

$$M_n(A) = Z(A) \cup (M(A) \cap Z_n(X);$$

For each $\varepsilon \in (0,1)^{T(A)}$ and for each $n \in N$, we define the set:

 $M(A,\varepsilon) = \bigcup_{n \in Z_{\perp}} M_n(A,\varepsilon),$

where $M_0(A,\varepsilon) = Z(A) = |F(A)|$ and

$$M_n(A,\varepsilon) = Z(A) \cup \{\sigma(\varepsilon(\sigma)) \cap \pi_{\sigma}^{-1}(M_{n-1}(A,\varepsilon)) : \sigma \in T_n(A)\}$$

Then the equality $M_{\mu}(A,\varepsilon) \cap X = A$ holds.

For each open set U of the space X, the set $M(U,\varepsilon)$ is open in Z(X). In this case, the family $B(M) = \{(U,\varepsilon): U \text{ is open in } \varepsilon \in (0,1)^{(U)}\}$ is an open base of the space Z(X).

Therefore, if for every $n \in N$ and every $\varepsilon \in (0,1)^{T_1(A) \cup T_2(A) \cup \dots \cup T_n(A)}$, the set $M_n(A,\varepsilon)$ is defined, then the family $B(M) = \{(M_1, (U,\varepsilon)\}: U \text{ is open in } X \text{ and } \varepsilon \in (0,1)^{T_1(U)}\}$ is an open base for $Z_1(X)$, i.e the following holds.

Lemma [5]. Families { $M(U,\varepsilon)$: U is open in X and $\varepsilon \in (0,1)^{T_1(U)}$ } and { $(M_1, (U,\varepsilon)$ }: U is open in X and $\varepsilon \in (0,1)^{T_1(U)}$ } is the base of the space Z(X), (respectively, the space $Z_1(X)$).

Let $A \subset X$, then the subspace Z(X) | Z(A) of the space Z(X) consists of points of the form: z = (1-t)x + ty, where $x \in Z(X \setminus A)$, $y \in Z(A)$, $t \in [0,1)$, i.e.

 $Z(X)|Z(A) = \{z = (1-t)x + ty \in Z(X): x \in Z(X|A), y \in Z(A), t \in [0,1)\}.$

Obviously, if the set A is closed in X, then Z(A) is closed in Z(X). It should be noted that the set itself is also closed in Z(X), i.e. X; $Z_1(X)$.

Note that for $z \in Z(X)$, based on the structure of the space Z(X), the point has the form: $z = m_0$ $\bar{x}_0 + m_2 \bar{x}_2 + ... + m_n \bar{x}_n$, where $\sum_{i=0}^n m_i = 1$, $m_i \ge 0$, and $x_i \in X$. In other words, the point z belongs to the simplex $\sigma = \langle \bar{x}_0, ..., \bar{x}_n \rangle$, whose vertices are points x_i of space X, denoted by $\bar{x}_0, \bar{x}_1, ..., \bar{x}_n$, which are the points (vertices) of the simplex $\sigma = \langle \bar{x}_0, ..., \bar{x}_n \rangle$.

If $z \in Z_1(X)$, then the point z has the form z = x, where $x \in X$. Hence, for each point $z \in Z(X) | Z_1(X)$ there exists a simplex $\sigma \in Z(X)$ such that $z \in \sigma = \langle \bar{x}_0, \bar{x}_1, ..., \bar{x}_n \rangle$ and $z = \sum_{i=0}^n m_i \bar{x}_i m_i > 0$, and $\sum_{i=0}^n m_i = 1$. The vertices of the simplex $\sigma = \langle \bar{x}_0, \bar{x}_1, ..., \bar{x}_n \rangle$ are referred to supports of the point $z \in \sigma$, i.e. suppz = $\{x_0, x_1, ..., x_n\}$.

In this case, there exists at least j_1 and $j_2 \in \overline{0, n}$ such that $m_{j1} \neq 0$ and $m_{j2} \neq 0$, indicating that the point $z \in Z(X) | Z_1(X)$ has at least two points in its support. Therefore, if $z \in Z(X) | Z_1(X)$, then $|\text{suppz}| \ge 2$. On the other hand, given the construction of the space Z(X), for any $n \in N$, there is a point $z \in Z(X)$ such that $|\text{suppz}| \ge n$. If $z \in Z_n(X)$, then $|\text{suppz}| \ge n$.

In the paper [1] by R. Coty, it was demonstrated that the space Z(X) is stratifiable (in short, a *S*-space) if and only if *X* is a *S*-space.

Let $f: X \to Y$ be a continuous mapping between the S-spaces X and Y. The continuous mapping $Z(f):Z(X) \to Z(Y)$ is defined as follows: for each point $z \in Z(X)$ and $z \in \langle \bar{x}_0, ..., \bar{x}_k \rangle$

 $z_{x} = m_{0} \bar{x}_{0} + \dots + m_{k} \bar{x}_{k}, \sum_{k=1}^{k} m_{i} = 1, m_{i} \ge 0 \text{ assign point } z_{y} \in Z(Y), z_{y} = \langle \bar{y}_{0}, \dots, \bar{y}_{k} \rangle z_{y} = m_{0} \bar{y}_{1} + m_{2} \bar{y}_{2} + \dots + m_{k} \bar{y}_{k}, \text{ where } f(\bar{x}_{i}) = \bar{y}_{i}.$

The mapping $Z(f):Z(X) \to Z(Y)$ is simplicial. Therefore, Z(f) is continuous. Note that Z(f)(Z(X)) = Z(f(X)) and $Z(f)(Z(X)|X) \subset Z(Y)|Y$. Hence, if the mapping $f:X \to Y$ is surjective, then $Z(f):Z(X) \to Z(Y)$ is also surjective and vice versa.

- a) If $id_x: X \to X$ is the identity mapping, then $Z(id_x): Z(X) \to Z(X)$ is also the identity mapping, i.e. $Z(id_x) = id_{z(x)}$.
- b) Let $p: X \rightarrow Y$ and $g: Y \rightarrow L$ be continuous mappings between the stratifiable spaces X, Y and L. If $f = g \circ p: X \rightarrow L$, where the diagram

$$\begin{array}{c} X \xrightarrow{p} Y \\ f][g \\ L \end{array} \tag{1}$$

is commutative, then $Z(f) = Z(p \circ g)$: $Z(X) \rightarrow Z(L)$, which is the diagram

$$Z(X) \xrightarrow{Z(p)} Z(Y)$$

$$Z(f)][Z(g)$$

$$Z(L)$$
(2)

is also commutative. Hence, we see that the mapping $Z:X \rightarrow Z(X)$ forms a covariant functor between stratifiable spaces and their continuous mappings.

If $f = p \circ g$, then $Z(f) = Z(p \circ g) = Z(p) \circ Z(g)$. Hence, the mapping of the stratifiable space Z: $X \rightarrow Z(X)$ is functorial. Each mapping $f: X \rightarrow Y$ can be associated with the above defined simplicial mapping $Z(f):Z(X) \rightarrow Z(Y)$. From properties a) and b), we can assert that this mapping Z is a covariant functor on the category of S- spaces and continuous mappings into itself.

Thus, the following is true:

Theorem 1. is a covariant functor.

Note that the functor Z: $S \rightarrow S$ has the following properties:

1°. From the construction of the space Z(X) and Lemma [5], it follows that the functor Z: $S \rightarrow S$ preserves the entire space $\omega(Z(X)) \leq \omega(X)$, i.e. $\omega(Z(X)) \leq \omega(X)$.

2°. For $X \in S$, the mapping or embedding $\eta_z: X \to Z(X)$ is constructed by defining $\eta(X) = \langle x \rangle$, where $x \in Z(X)$, and x is vertex, i.e. x is a zero-dimensional simplex in Z(X). The mapping $\eta: X \to Z(X)$ is continuous and one-to-one, implying that $\eta_z: X \to Z(X)$ is an embedding.

An immediate check shows that the functor $Z: S \rightarrow S$ preserves

3°. a point and an empty set;

4°. intersection of closed sets;

- 5°. preimages of mappings;
- 6°. continuous in the sense of Shchepin [2];
- 7°. monomorphic; and,
- 8°. epimorphic.

Note that the functor Z: $S \rightarrow S$ with finite supports does not have finite degrees. Hence, the functor Z: $S \rightarrow S$ preserves a point, an empty set, intersections of closed sets, and inverse images of mappings. It is continuous, epimorphic, and monomorphic, i.e. the functor Z: $S \rightarrow S$ is normal.

For each $n \in N_+$ defube $Z_n(X) = \{z \in Z(X)\}$: $|\text{supp} z| \le n-1\}$, where $z_x = \sum_{i=0}^n m_i \bar{x}_i$, $\sup_{x_i \in X_i} x_1, \dots, x_n\}$, $\sum_{i=0}^n m_i = 1$, $m_i \ge 0$, $\sup_{x_i \in X_i} z_i < X$.

- a) The set $Z_n(X)$ is closed in Z(X);
- b) for n = 0, $Z_0(X) \cong X$;
- c) for each mapping $f: X \to Y$ between S spaces, the mapping $Z_n(f):Z_n(X) \to Z_n(Y)$ is defined as follows: $Z_n(f) = Z(f)|_{Z_n(X)}: Z_n(X) \to Z_n(Y)$.

The mapping $Z_n(f):Z_n(X) \to Z_n(Y)$ is also continuous, i.e. $Z_n: S \to S$ is a subfunctor of the functor Z. The functor $Z_n: S \to S$ possesses all properties of the functor Z: $S \to S$. Functor $Z_n: S \to S$ is a functor with finite *n*-supports.

Since the mappings Z(f) and $Z_n(f)$ are simplicial, we can assert:

Theorem 2. A mapping $f: X \rightarrow Y$ between S-spaces is open if and only if $Z(f): Z(X) \rightarrow Z(Y)$ is open (or $Z_n(f): Z_n(X) \rightarrow Z_n(Y)$ is open).

The following is easily proved.

Theorem 3. A map $f: X \rightarrow Y$ between S-spaces mapping $Z(f): Z(X) \rightarrow Z(Y), Z_n(f): Z_n(X) \rightarrow Z_n(Y)$ is a homeomorphism if and only if is a homeomorphism.

Note that the covariant functors Z: $S \rightarrow S$ and $Z_n: S \rightarrow S$ is a normal functor.

A monad (or triplet) on the category G is a triplet $T = \langle F, \psi, \eta \rangle$, where $F: G \rightarrow G$ is a functor η : $Id \rightarrow F$ (unit) and $\psi: F^2 \rightarrow F$ (multiplication) are natural transformations. Additionally, for each object X, the following equalities are satisfied:

$$\psi_X \circ F(\eta_X) = id_{F(X)},$$
$$\psi_X \circ \eta_{F(X)} = id_{F(X)}$$
$$\psi_X \circ F(\psi_X) = \psi_X \circ \psi_{F(X)}$$

A functor F is called monadic if it can be included in some monad.

Theorem 4. *The covariant functor* $Z: S \rightarrow S$ *is monadic.*

Proof. As previously mentioned, the mapping $\eta: Z(X) \to Z(Y)$ which assigns to each point $x \in X$ the vertex \overline{x} of the simplex in Z(X) is continuous, i.e. $\eta(x) = \overline{x}$.

Let
$$z \in Z(Z(X)) = Z^2(X)$$
. Then the point *z* has the form $z = \sum_{k=1}^{n} \mu_i z_k$, where $z_i \in Z(X)$,

$$z_{i} = \sum_{i=0}^{l_{i}} m_{s}^{i} \overline{x_{s}^{i}}, \sum_{i=0}^{k} \mu_{i} = 1, \sum_{s=0}^{l_{i}} m_{s}^{i} = 1, x_{s}^{i} \in X,$$

$$z = \sum_{i=0}^{k} \mu_{i} z_{i} = \mu_{0} z_{0} + \mu_{1} z_{1} + \ldots + \mu_{k} z_{k} = \mu_{0} \sum_{s=0}^{l_{0}} m_{s}^{0} \overline{x_{s}^{0}} + \mu_{1} \sum_{s=0}^{l_{1}} m_{s}^{1} \overline{x_{s}^{1}} + \ldots + \mu_{k} \sum_{s=1}^{l_{k}} m_{j}^{k} \overline{x_{s}^{k}} = \sum_{i=0}^{k} \sum_{s=0}^{l_{i}} \mu_{i} m_{s}^{i} \overline{x_{s}^{i}} ; We$$

put $a_s^i = m_s^i \mu_1 \ge 0$, $\sum_{i=0}^k \sum_{s=0}^{l_i} a_s^i = 1$. Hence, $z = \sum_{i=0}^k \sum_{s=0}^{l_i} a_s^i \overline{x_s^i}$, $\overline{x_s^i} \in X$. Hence, $z \in X(X)$ that is the mapping $\psi \in Z(Z(X)) \longrightarrow Z(X)$ is defined. The mapping Ψ_x is continuous because Ψ_x is linear.

A simple check shows that for the triple $Z=Z, \Psi, \eta_X$ satisfies the following conditions:

- (a) $\Psi_X \circ Z(\eta_X) = id_{Z(X)};$
- (b) $\Psi_X \circ \eta_{Z(X)} = id_{Z(X)};$
- (c) $\Psi_X \circ Z(\Psi_X) = \Psi_X \Psi_{Z(X)};$

Z: $S \rightarrow S$ functor, η_Z : $id \rightarrow Z$ (one) and Ψ : $Z^2 \rightarrow Z$ (multiplication) natural transformation. Hence, the triple $T = \langle Z, \Psi, \eta_X \rangle$ is monadic. Theorem 4 is proved.

Theorem 5. For any stratifiable space X, the space Z(X) is convex and the subspace $Z_v(X)$ is homotopically dense in Z(X).

Proof. Let $X \in S$. Two cases are possible : a) X is finite. b) X is infinite. In case a) the space Z(X) consists of one simplex $\sigma = \langle x_0, x_1, ..., x_n \rangle$. This simplex σ is convex and the subspace $Z_V(X) = Z(X)$ $|X = \sigma \setminus \{x_0, x_1, ..., x_n\}$ is homotopy and dense in Z(X). Let X be infinite. In this case, the space Z(X) is convex. Indeed, for any points $z_0 \in Z(X)$, $z_1 \in Z(X)$, the segment $[z_0, z_1]$ lies entirely in the space Z(X), i.e. $[z_0, z_1] \subset Z(X)$. Now we can that the subspace $Z_V(X)$ is homotopically dense in Z(X).

We construct the desired homotopy $h(z,t):Z(X)\times[0,1]\rightarrow Z(X)$ supposing $h(z,t) = (1-t) z+t\cdot z_0$, where $z \in Z(X), t \in [0,1], z_0 = m_0 \overline{x_0} + ... + m_n \overline{x_n} \sum_{i=1}^n m_i = 1, m_i > 0, m_i \neq 0.$

If t = 0, then $h(z,0) = (1-0) z + 0 \cdot z_0 = z$, i.e. $h(z,0) = id_{z(x)}$.

If $t \in (0,1]$, that is, t > 0, $t \le 1$, then the point $h(z,1) = (1-t) z + t \cdot \overline{z_0} \in Z_1(X)$, i.e. $h(z,0) = id_{z(x)}$, i.e. point $h(z,1) \in Z_{\nabla}(X)$. This means that the subspace $Z_{\nabla}(X)$ is homotopically dense in Z(X). The theorem is proved.

A subset $A \subset X$ of the space X is said to be homotopically dense in X [9] if there exists a homotopy $h:X \times [0,1] \to X$ such that $h(x,0) = id_x$ and $h(X \times (0,1]) \subset A$. Therefore, the subset $A \subset X$ is called homotopy negligible [9] if the complements X\A is homotopy dense in X. The above theorem implies.

Corollary. For any stratifiable space X, the space $Z_1(X)$ itself is homotopically negligible in Z(X)

Theorem 6. Let X be a finite-dimensional St-space. Then $Z_n(X)$ is a finite-dimensional St-space. Moreover, the inequality dim $Z_n(X) \le \dim X^n + n-1 \le n \dim X + n-1$ is true.

Proof. Let X be a St- space and dim $X < \infty$. Note that for any $n \in N$ the space $Z_n(X)$ is also St-a space, therefore, $Z_n(X)$ is a perfectly normal paracompact space. It follows from the results of [8,10] that

 $\dim X^n \times \sigma^{n-1} \leq \dim X^n + \dim \sigma^{n-1} \leq n \dim X + n-1$

Through induction on n, =

$$\dim Z_n(X) \le n \dim X + n-1 \tag{3}$$

For n = 1, this inequality (3) is valid, since the space $Z_1(X)$ is homeomorphic to X by definition. those $Z_1(X)$; X.

Let the inequality $\dim Z_{n-1}(X) \le (n-1) \dim X + \dim Z_{n-1}(\overline{n-1})$. The theorem is proved.

First, it is demonstrated that $rd_{Z_n}(X)|Z_{n-1}(X) \ge n \dim X + n - 1$, where rd_XA is the relative dimension of the subspace A in the space [7]. The subspace $Z_n(X)|Z_{n-1}(X)$ is also St- space, hence it is paracompact. The space $Z_n(X)$ at the points of the set $Z_n(X)|Z_{n-1}(X)$ is locally homeomorphic to the open subspace of the product $X^n \times \sigma^{n-1}$. From Theorem 21 of [7] Dowker-Nagami we obtain that $rd_{Z_n(X)}(Z_n(X))|Z_{n-1}(X)) \le n \dim X + n-1$.

Then, applying another Dowker's theorem 10 [7], we obtain that

 $\dim Z_n(X) \le n \cdot \dim X + n-1.$

The theorem 6 is proved.

A space X is weakly star countable if for each open cover U of X there exists a countable subset F of X such that $(\bigcup_{x \in F} St(x, U) = X)$.

Theorem 7. If X is a weakly countable St-space, then $Z_n(X)$ is also weakly countable.

Theorem 8. For any weakly countable or finite-dimensional St-space, the space Z(X) is weakly countable.

Theorem 9. For any infinite St- space X, the space Z(X) is infinite-dimensional.

Definition. For the subset of the normal space X, we write [7] $rd_X A \le n$ (relative dimension A in $X \le n$), if for any set F lying in A and closed in X the inequality $dim F \le n$, n = -1, 0, 1, 2, ...

Theorem 10 [7]. *If in the normal space* X *there exists a closed set* F *such that dim* $F \le n$ *and* $rd_X(X \setminus F) \le n$, *then dim* $X \le n$.

Theorem 11 [7]. For paracompact the following is always true

Definition [7]. For a normal space X, we assume *loc dim* $X \le n$ if for any point $x \in X$ there exists a neighborhood *Ox* for which $dim[Ox] \le n$, n = 0, 1, 2, ... (For empty X we get *loc dim* X = -1).

CONFLICTS OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

- [1] Borges, C. R. (1996). On stratibiable spaces. *Pacific Journal of Mathematics*, 17(1), 1-16.
- [2] Robert, C. (1972). Retractions dans les espaces stratibiables. *Bulletin de la Société Mathématique de France*, *102*, 129-149. https://eudml.org/doc/87222
- [3] Borges, C. R. (1969). A study of absolute extensor spaces. *Pacific Journal of Mathematics*, 31(3), 609-617. https://msp.org/pjm/1969/31-3/pjm-v31-n3-p07-s.pdf
- [4] Borsuk, K. (1971). *The theory of retracts* (pp. 291).Moscow: Mir Publisher.
- [5] Robert, C., Bao-Lin, G., & Sakai, K. (1995). The hyperspace of finite subsets of a stratifiable space. Fundamenta Mathematicae, *147*, 1-9. https://bibliotekanauki.pl/articles/1208364.pdf
- [6] Zhuraev, T. F. (2014). *Equivariant analogs of some geometric and topological properties on stratifiable spaces X* (pp. 23-27). West. Kirg. Nat. University.
- [7] Aleksandrov, P. S., & Pasynkov, B. A. (1973). *Introduction to the theory of dimension* (pp. 576). Moscow, Izdatel'stvo Nauka.
- [8] Zhuraev, T. F. (1989). Some geometric properties of the functor of probabilistic measures and *its subfunctors* [Doctoral's Dissertation Thesis, MGU, Moscow].
- [9] Banakh, T., Radul, T., & Zarichniy, M. (1996). *Absorbing sets in infinite-dimensional manifolds*. (Mathematical Studies Monograph Series, Vol. 1). VNTL Publishers.
- [10] Zhuraev, T. F. (1992). σ-spaces and functors of finite degree. *Reports of Uzbekistan Academy of Sciences*, 4-5, 15-18.