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INTRODUCTION

A simplicial complex is defined as a set K for which its representation is fixed in the form of a union
of some family of closed simplices, each two of which are not intersected, either one of them is a
face of the other, or is intercepted by a simplex that is a face of each of them. The set K itself is called
the body of the complex under consideration. In the presence of a complex, its body is uniquely
determined, but one and the same set can be the body of various complexes. A simplicial complex
is called complete if the complex K by an arbitrary given simplex c€K also contains all the faces
of this simplex.

Let K be a simplicial complex. By K™, we denote the set of n-dimensional simplices (skeletons)
of the simplicial complex K. |K] is a polyhedron, i.e.|K|= U K in weak topology.

For each simplex o€k, the barycentre, the interior and the boundary of the simplex ¢ are
denoted by 4, o and do, respectively. A simplex, whose vertices are 9,, 9,,...,9n, is denoted by < 9,
8., K,9n>. Thus, <o (7 < o) implies that 7 is an integral part (facade or component) of the simplex
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o. For each point x€|K| through (x(&) of the simplex o€k, the barycentric coordinates with respect
to the barycentre of the § K subdivision are denoted.

Asimplicial subdivision of a simplex ceK is a family P= {0 :i = lj} of simplices in K satisfying
the following three conditions:

a)o=U . o;
b) For any i, j <k, the intersection S, N S, is either empty or is a common face of the simplices
o,and o,

¢) Fori=1,2,....k, all faces of the simplex o, belong to P.

The fineness of the simplicial subdivision {o:i = 1,k} of the simplex o is defined as the largest
among the numbers d(c,), d(a,),...,0(d,). For each simplex o = a, a,,...,a_, the point

1 1
—m+1a°+—m+1a1+"'+m—+1am

b(o) =
is referred to as the barycentre (or centre of gravity) of the simplex o. It is evident that b(c)€a,
and b(o) do not belong to any (m -1)-dimensional face of the simplex o.

Consider an arbitrary simplex ¢ = < a, a,,...,a, >. For each decreasing sequence 0,2 ¢, 2...D
o, of different faces of the simplex o, the points b(a,), b(7)),..., b(c,) are linearly independent. The
family /7 of all simplices of the form < b(c,), b(0))...., b(c,) > will be a simplicial subdivision of the
simplex o. Each (m-1)-dimensional simplex 7€ /7 is a face of one or two m-dimensional simplices
of the family /7, depending on whether the simplex is contained or not 7"in some (m-1)-dimensional
face of the simplex o. This particular simplicial subdivision, as described above, is referred to as the
barycentric subdivision of the simplex o.

Consider a number e [0,1] and o(?) = {xeo: 0 < x(0) < ,(x(0)) are barycentric coordinates
of the point x}. For each ¢€[0,1], the set o(¢) is an open neighbourhood of the boundary do of the
simplex o, and o(7) = ¢/_o(7). Note that o(1) = o \{5}.

Each point xeo (1) can be expressed as as:

x = (1 - x(&)) s (x) + x(8)86,

where 7 (x)edc and _(x): 6(1) — 0o is a radial projection for each ceK. Furthermore, each point
XEU,V,,...,L, can be written as:

n

x =26,

where v.eK”, and b(v)) represent the barycentric coordinates of the point x.

MAIN PART

Let X be a topological space, and |F(X)| be a complete simplicial complex whose vertices are points
of X, i.e. |[F(X)°|= X. The space |F(X)] is equipped with the weak topology. Now, a topology on the
space |F(X)| is defined, denoting the basis of open sets as Z(X), which consists of /¥ open in F(X),
and satisfy the following conditions:

ol. W N Xopen in X,
02. |[F(W N X)|c W;
Le. 7, = {Wer,,: Wsatisfies the conditions 01-02}.
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Condition 02 means that every simplex o€ F(X) is contained in ¥ if all vertices of this simplex
o lie entirely in W N X.

For the subset 4 — X, the set F(A4) is a subcomplex of the full complex F(X) and Z(X) is a
subspace of the space Z(X). Obviously, Z(4) is closed in Z(A) if is closed in X.

For each neZ = NU {0}, define Z (X) = |F(X)"|, which is a subspace of Z(X). Then, Z (X) = X
and Z(X) = Uizo Z (X). It is evident that for any neZ, the subspace Z (X) is closed in Z(X).
Let us introduce the following notation:
T(A) = {ceF(X)\ F(A): c N A+ T};
M(A) = {xeZ(X): there exists e F(A) such that x(6) < 0};
T (A4) = TN EFEX)"FX)™);
M (4) = Z(A) U(M(A) N Z, (X);
For each ¢€(0,1)™ and for each ne N, we define the set:
M(A4,e) = u._, Mn(A,e),
where M (4,e) = Z(4) = [F(A4)| and
M (4,e) = Z(A)U{o(e(o)N x (M (4,e)):0€T (A)}.

Then the equality M (4,) N X = 4 holds.

For each open set U of the space X, the set M(U,¢) is open in Z(X). In this case, the family B(M)
= {(U,):Uis open in g€ (0,1)V} is an open base of the space Z(X).

Therefore, if for every neNand every ee (0,1)"WVED-2T,0 the set M (4,¢) is defined, then
the family

B(M)={(M,, (U,e)}:Uis open in X and g€ (0,1)"”’} is an open base for Z (X), i.e the following
holds.
Lemma [5]. Families {M(U,¢):U is open in X and £€(0,1)"""} and {(M,, (U,e)}:U is open in X and
£€(0,1)"D}is the base of the space Z(X), (respectively, the space Z (X)).

Let A c X, then the subspace Z(X)\ Z(4) of the space Z(X) consists of points of the form: z =
(1-f)x + ty, where x € Z(X\4), y € Z(A), t[0,1), i.e.

ZXO\Z(A) = {z=(1-t)x+ty € Z(X): x € Z(X\A),y €Z(A),t€[0,1)}.

Obviously, if the set 4 is closed in X, then Z(A4) is closed in Z(X). It should be noted that the set
itself is also closed in Z(X), i.e. X; Z (X).

Note that for ze Z(X), based on the structure of the space Z(X), the point has the form: z = m,
x;tmyx,t.+mx  where )." m =1, m >0, and x, € X. In other words, the point z belongs to the
simplex 6 = <X, ..., X, >, whose vertices are points x, of space X, denoted by x, x ..., X , which are
the points (vertices) of the simplex 6 = <x,, ..., x, >.

If zeZ (X), then the point z has the form z= x, where xe X. Hence, for each point ze Z(X)\Z (X)
there exists a simplex ceZ(X) such that zeg =<x ,x,,....x > and z =) _ m x,m >0, and ) _ m=1.
The vertices of the simplex 6 = <x,, X, ..., X, > are referred to supports of the point zeg, i.e. suppz
= XX X
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In this case, there exists at least j, and j, € 0, n such that m,# 0 and m# 0, indicating that the
point ze Z(X)\Z (X) has at least two points in its support. Therefore if zeZ(X) Z (X), then [suppz[>2.
On the other hand given the construction of the space Z(X), for any neN, there is a point ze Z(X)
such that [suppz| > n. If ze Z (X), then [suppz| > n.

In the paper [1] by R. Coty, it was demonstrated that the space Z(X) is stratifiable (in short, a
S-space) if and only if X is a S-space.

Let f>2X—7Y be a continuous mapping between the S-spaces X and Y. The continuous mapping
Z():Z(X)—Z(Y) is deﬁned as follows: for each point ze Z(X) and z&(x,j,...,x )

=m X, ..+ mx, Zlmizl, m,Z 0 assign point z €Z(Y), z,= (..., V) 2,= m ¥+ m,y, .+ m,

Ve where j(xl) V.

The mapping Z(f):Z(X) — Z(Y) is simplicial. Therefore, Z(f) is continuous. Note that Z(f)(Z(X))
= Z(f(X)) and Z(f)(Z(X)\X) c Z(Y)\Y. Hence, if the mapping /:X —Y is surjective, then Z(f):Z(X)—
Z(Y) is also surjective and vice versa.

a) Ifid: X—»X is the identity mapping, then Z(id ): Z(X) —Z(X) is also the identity mapping, i.e.
Z(zd )

b) Letp: X—>Y and g: Y—L be continuous mappings between the stratifiable spaces X, Y and L.
If f= g ° p: X—L, where the diagram
X E) Y
fllg 1
) M

is commutative, then Z(f) = Z(p ° g): Z(X) — Z(L), which is the diagram

Z(p)
ZX) = Z(Y)
2(P)]12(9)
(L) )

is also commutative.
Hence, we see that the mapping Z:X—Z(X) forms a covariant functor between stratifiable spaces
and their continuous mappings.

If f=p g, then Z(f) = Z(p ° g) = Z(p) ° Z(g). Hence, the mapping of the stratifiable space Z:
X—Z(X) is functorial. Each mapping f: X—Y can be associated with the above defined simplicial
mapping Z(f):Z(X) —Z(Y). From properties a) and b), we can assert that this mapping Z is a covariant
functor on the category of S- spaces and continuous mappings into itself.

Thus, the following is true:

Theorem 1. is a covariant functor.
Note that the functor Z: S—S has the following properties:

1°. From the construction of the space Z(X) and Lemma [5], it follows that the functor Z: S—S
preserves the entire space w(Z(X)) < w(X), i.e. o(Z(X)) < w(X).

2°. For XeS, the mapping or embedding #_: X—Z(X) is constructed by defining #(X) = (x), where
xeZ(X), and x is vertex, i.e. X is a zero-dimensional simplex in Z(X). The mapping n: X—Z(X) is
continuous and one-to-one, implying that 7 : X—Z(X) is an embedding.

Journal of Mathematical Sciences and Informatics, Volume 3 Number 2, December 2023, 24-31

@ 10/1/2024 4:25:05 PM

27



1 TNEE @® [ BT | [ [

Zhuraev Tursunboy et al. 28

An immediate check shows that the functor Z: S—S preserves
3°, a point and an empty set;
4°. intersection of closed sets;
5°. preimages of mappings;
6°. continuous in the sense of Shchepin [2];
7°. monomorphic; and,
8°. epimorphic.
Note that the functor Z: S—S with finite supports does not have finite degrees. Hence, the

functor Z: S—S preserves a point, an empty set, intersections of closed sets, and inverse images of
mappings. It is continuous, epimorphic, and monomorphic, i.e. the functor Z: S—»S is normal.

For each ne N, defube Z (X) = {ze Z(X)}: |suppz| < n-1}, where z_= Z m.xX,, suppz ={x,,
XX, by Do, —l m>0, suppz_C X.

1
a) The set Z (X) is closed in Z(X);
b) forn=0,Z(X) =X,
c) for each mapping f: X—7Y between S spaces, the mapping Z (f):Z (X)—Z (Y) is defined as
follows: Z (f) = Z(f)|zn(x): Z(X)— Z(Y).

The mapping Z (f):Z (X)—Z (Y) is also continuous, i.e. Z : S—S is a subfunctor of the functor
Z. The functor Z : S—S possesses all properties of the functor Z: S—S. Functor Z : $—S§ is a functor
with finite n-supports.

Since the mappings Z(f) and Z (f) are simplicial, we can assert:

Theorem 2. 4 mapping f: X—Y between S-spaces is open if and only if Z(f): Z(X)—Z(Y) is open (or
Z (N): Z (X)—Z (Y)is open).

The following is easily proved.

Theorem 3. A map f: X—Y between S-spaces mapping Z(f): Z(X)—Z(Y), Z (f): Z(X)—Z(Y) is a
homeomorphism if and only if is a homeomorphism.

Note that the covariant functors Z: S—.S and Z:85—>8 is a normal functor.

A monad (or triplet) on the category G is a triplet 7 = <Ey,n>, where F:G—G is a functor 7.
1d—F (unit) and y:F*—F (multiplication) are natural transformations. Additionally, for each object
X, the following equalities are satisfied:

Py ° F(nx) = idrxy,
Yy ° Nrepy = Ldp

Yy o F(x) =y o IPF(X)

A functor F is called monadic if it can be included in some monad.

Theorem 4. The covariant functor Z: S—S is monadic.
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Proof. As previously mentioned, the mapping #: Z(X)—Z(Y) which assigns to each point xe X the
vertex x of the simplex in Z(X) is continuous, i.e. 7(x) =X.

k
Let ze Z(Z(X))=Z*X). Then the point z has the form z =) .z, where z € Z(X),
k=1

1
;
P
Ymi=1xleX,

B
5=0

[
i — &
— i —
5= mx, =1
0 0

I l; [/ ;L
0 — 1 — k — ki —
- .= - — 0.0 1.1 k_k _ ii.
=D M= HyZy I e 2 =y DX gy Y mx e gy mx = Y x5 We
5=0 5=0 s=1 i=05=0

R

) . kLo Bl — — .
put al =miu >0, Y > d =1. Hence, z=>Ya'x , x} € X. Hence, ze X(X) that is the

mapping yeZ(Z(X))—Z(X) is defined. The mapping ¥ is continuous because ¥ _is linear.

A simple check shows that for the triple Z=Z, ¥, satisfies the following conditions:
a) Y.Zn,)= idZ(X);
b) ¥ Ny = idzmg
) Ve Z¥) =YYV,
Z: §—S functor, #,: id—Z (one) and ¥: Z*—Z (multiplication) natural transformation. Hence, the
triple 7= (Z, ¥, n,) is monadic. Theorem 4 is proved.

Theorem 5. For any stratifiable space X, the space Z(X) is convex and the subspace Z (X) is
homotopically dense in Z(X).

Proof. Let XeS§. Two cases are possible : a) X is finite. b) X is infinite. In case a) the space Z(X)
consists of one simplex ¢ = <x, x,,..., x,>. This simplex o is convex and the subspace Z (X) = Z(X)
X = o\{x,, x,..., x,} is homotopy and dense in Z(X). Let X be infinite. In this case, the space Z(X) is
convex. Indeed, for any points z € Z(X), z, € Z(X), the segment [z ,z ] lies entirely in the space Z(X),

i.e. [z,,2,] = Z(X). Now we can that the subspace Z (X) is homotopically dense in Z(X).

We construct the desired homotopy A(z,1):Z(X)x[0,1]—Z(X) supposing h(z,t) = (1-1) z+tz,
where ze Z(X), te[0,1], z=m X +..+ m x> m=1,m>0,m+#0.
If t=0, then h(z,0) = (1-0)z + 0 - z,= z, i.e. h(z,0) = idz(x)_

If ¢ €(0,1], that is, > 0, < 1, then the point (z,1) = (1-1) z+1 - Z, € Z, (X), i.e. h(z,0) = id_,
i.e. point A(z,1)e Z (X). This means that the subspace Z (X) is homotopically dense in Z(X). The
theorem is proved.

A subset 4 — X of the space X is said to be homotopically dense in X [9] if there exists a
homotopy /:X x [0,1] —X such that /(x,0) = id_and h(X x (0,1]) < 4. Therefore, the subset 4 = X is
called homotopy negligible [9] if the complements X4 is homotopy dense in X. The above theorem
implies.

Corollary. For any stratifiable space X, the space Z (X) itself is homotopically negligible in Z(X)

Theorem 6. Let X be a finite-dimensional St-space. Then Z (X) is a finite-dimensional St-space.
Moreover, the inequality dim Z (X) < dim X"+ n-1 <n dim X + n-1is true.

Proof. Let X be a St- space and dim X < oo. Note that for any neN the space Z (X) is also St-a
space, therefore, Z (X) is a perfectly normal paracompact space. It follows from the results of [8,10]
that
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dim X" x ¢ "' <dimX"+dim o"' <n dim X+n-1
Through induction on n, =
dim Z (X) <n dim X + n-1 3)
For n= 1, this inequality (3) is valid, since the space Z,(X) is homeomorphic to X by definition. those
Z,(X); X.
Let the inequality dim Z  (X) < (n-1) dim X +dim Z (n-1). The theorem is proved.

First, it is demonstrated that rd, (X)\Z | (X)) < n dim X + n -1, where rd A is the relative
dimension of the subspace 4 in the space [7]. The subspace Z (X)\Z (X) is also St- space, hence
it is paracompact. The space Z (X) at the points of the set Z (X)\Z (X) is locally homeomorphic to
the open subspace of the product X" x ¢™!. From Theorem 21 of [7] Dowker-Nagami we obtain that
rd,, o(Z(ONZ, (X)) <ndim X+ n-1.

Then, applying another Dowker’s theorem 10 [7], we obtain that
dim Z (X) <n -dim X + n-1.
The theorem 6 is proved.

A space X is weakly star countable if for each open cover U of X there exists a countable subset
F of X such that (U _, St(x,U)=X .

Theorem 7. If X is a weakly countable St-space, then Z (X) is also weakly countable.

Theorem 8. For any weakly countable or finite-dimensional St-space, the space Z(X) is weakly
countable.

Theorem 9. For any infinite St- space X, the space Z(X) is infinite-dimensional.

Definition. For the subset of the normal space X, we write [7] rd, 4 < n (relative dimension 4 in X
< n), if for any set /' lying in 4 and closed in X the inequality dim F <n, n =-1,0,1,2, ....

Theorem 10 [7]. If in the normal space X there exists a closed set I such that dim FF < n and rd,
(X\F) <n, then dim X <n.

Theorem 11 [7]. For paracompact the following is always true
loc dim X=dim X
Definition [7]. For a normal space X, we assume foc dim X < n if for any point xe X there exists a

neighborhood Ox for which dim[Ox] <n, n=0, 1,2, .... (For empty X we get loc dim X = -1).
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