

2-LOCAL AUTOMORPHISMS AND ANTI-AUTOMORPHISMS ON REAL AND COMPLEX AW*-ALGEBRAS

KH. A. NAZAROV!*, S. M. KHOLBEKOVA² AND ZABIDIN SALLEH³

1 Department of Mathematics, Fergana State University, Fergana, Uzbekistan; Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University, Tashkent, Uzbekistan; hasanbek.nazarov@mail.ru. ²Department of Mathematics, Fergana Polytechnic Institute, Fergana, Uzbekistan. 3 Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; zabidin@umt.edu.my

**Corresponding author: hasanbek.nazarov@mail.ru*

INTRODUCTION

Let *N* be an *-algebra. A linear operator *α*: *N*→*N* is called a **-automorphism* (respectively, a *-antiautomorphism), if $\alpha(a^*) = \alpha(a)^*$ and $\alpha(ab) = \alpha(a)\alpha(b)$ (respectively, $\alpha(ab) = \alpha(b)\alpha(a)$), for all *a,b*∈*N*. Each unitary (or invertible) element *u*∈*N* implements a *-automorphism *Adu* on *N* defined as *Adu*(*a*):=*uau*-1, *a*∈*N*. Such *-automorphisms are said to be *inner* *-*automorphisms*. A linear map Θ: A→A is called a *local *-automorphism* (respectively, a *local *-antiautomorphism*), if for every $a \in N$, there is a *-automorphism (respectively, a *-antiautomorphism) a_a of *N* such that $\Theta(a) = a_a$ (*a*). Now, a map Θ: A→A (not linear in general) is called a *2-local *-automorphism* (respectively, *2-local *-antiautomorphism*), if for every *a,b*∈*N*, there exists a *-automorphism (respectively, a *-antiautomorphism) $\alpha_{a,b}: N \rightarrow N$ such that Θ :(*a*) = $\alpha_{a,b}(a)$ and Θ :(*b*) = $\alpha_{a,b}(b)$. If in the definition of a 2-local *-automorphism (respectively, a *-antiautomorphism) we require linearity of mapping Θ, then, it is easy to demonstrate that it becomes a *-automorphism (respectively, a *-antiautomorphism). Moreover, it is also obvious that, for $n \geq 3$, *n*-local *-automorphisms (respectively, *-antiautomorphisms) are *-automorphisms (respectively, *-antiautomorphisms).

In [1] R.V. Kadison studied the concept of local derivations and demonstrated that local derivations of von Neumann algebras (i.e. W*-algebras) are derivations. Building on this, B.E. Johnson, in his study [2], generalised this result for C*-algebras. D.Larson and A.Sourour in [3] introduced

2-LOCAL AUTOMORPHISMS AND ANTI-AUTOMORPHISMS ON REAL AND COMPLEX 65 *AW*-ALGEBRAS*

and considered the notion of local automorphisms, proving that local automorphisms on $B(X)$ are automorphisms, where *X* represents an infinite-dimensional complex Banach space and *B*(*X*) denotes the algebra of all bounded linear operators on *X*. For real C*- and W*-algebras, the works of U. Karimov, such as [4], considered local derivations and local *-automorphisms. In [5] P. Semrl investigated 2-local automorphisms, specifically describing their properties on *B*(*H*), where *H* is the infinite-dimensional separable complex Hilbert space and $B(H)$ is the algebra of all bounded linear operators on *H*. Later, in [6], the same description was extended to the finite-dimensional case. A real analogue of these results was partially obtained in [7], where *H* is a real Hilbert space.

This paper focuses on 2-local automorphisms and anti-automorphisms on real and complex matrix algebras over unital real and complex Banach algebras. The results demonstrated that any 2-local anti-automorphism on a (complex) AW*-algebra without finite type I direct summands is an anti-automorphism. Additionally, this paper establishes that any 2-local automorphism on real AW*-algebra without finite type I direct summands is an automorphism.

It should be noted here that the study of 2-local anti-automorphisms, generally speaking, cannot be reduced to the study of 2-local automorphisms. Indeed, if (*e^α*)*^α*∈*^I* is some orthonormal basis for *H*, then, map *j*: $\sum \lambda_a e_a \rightarrow \sum \lambda_a e_a$ is the conjugation of *H*, and hence, we can construct a sufficient many (continuum) of pairwise non-conjugate involutive anti-automorphisms *J*(.)* *J* of C*- and AW*-algebras. Therefore, it suffices for us to consider a 2-local anti-automorphism Θ such that for any *x* and *y* there exists conjugation $J = J_{x,y}$ with $J^2 = 1$ (or $J^2 = -1$) and $\Theta(x) = Jx^*J$, $\Theta(y) = Jy^*J$. It is clear that the study of Θ cannot be reduced to the study of 2-local automorphisms.

Next, it is essential to note that there are examples of non-trivial 2-local automorphisms and anti-automorphisms. Let A be a subalgebra of $M_3(\mathbb{C})$, generated by elements (matrices) *I,* E_{12} , E_{13} , where *I* is a unit, and E_{12} , E_{13} are the matrix units of algebra $M_3(\mathbb{C})$. It is directly shown that a general form of automorphism of algebra A is the linear extension of θ acting on these elements as follows:

$$
\theta(I) = I
$$
, $\theta(E_{12}) = aE_{12} + bE_{13}$, $\theta bE_{13} = cE_{12} + dE_{13}$, where $ad - bc \neq 0$.

The mapping Θ: *A→A* is defined as:

$$
\Theta(a_{11}I + a_{12}E_{12} + a_{13}E_{13}) = a_{11}I + a_{12}I + a_{13}I + a_{13}I
$$

It's obvious that Θ is non-linear, thus, not an automorphism. But it is a 2-local automorphism. Let $A = a_{11}I + a_{12}E_{12} + a_{13}E_{13}$ and $B = b_{11}I + b_{12}E_{12} + b_{13}E_{13}$. If *A* and *B* are linearly dependent, then, it is not difficult to find the desired automorphism. If *A* and *B* are linearly independent, then, their images Θ(*A*) and Θ(*B*) are also linearly independent. Moreover, the elements:

$$
\left\{ \begin{pmatrix} a_{12} \\ a_{13} \end{pmatrix}, \begin{pmatrix} b_{12} \\ b_{13} \end{pmatrix} \right\}, \qquad \left\{ \begin{pmatrix} a_{12}^3 \\ a_{13}^3 \end{pmatrix}, \begin{pmatrix} b_{12}^3 \\ b_{13}^3 \end{pmatrix} \right\}
$$

are bases for (\mathbb{C}^2) . Then there is a non-singular change of the basis matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with:

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a_{12} \\ a_{13} \end{pmatrix} = \begin{pmatrix} a_{12}^3 \\ a_{13}^3 \end{pmatrix}, \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} b_{12} \\ b_{13} \end{pmatrix} = \begin{pmatrix} b_{12}^3 \\ b_{13}^3 \end{pmatrix}.
$$

Thus, there is an automorphism β_{AB} of A, defined by *a, b, c, d,* such that $\beta_{AB}(A) = \Theta(A)$ and $\beta_{AB}(B)$ $= \Theta(B)$.

PRELIMINARIES

Let *H* be a complex Hilbert space. Let *B*(*H*) be the algebra of all bounded linear operators on *H*. The weak (operator) topology on *B*(*H*) is the locally convex topology, generated by the seminorm of the form: ρ(*a*) = |(ξ, *aη*)|, ξ, *η*∈*H a*∈*B*(*H*). A weakly closed *-subalgebra *M* containing identity operator 1 in *B*(*H*) is called a *W**-*algebra*. Recall that *W** -algebras are also called von Neumann algebras. The centre *Z*(*M*) of a *W** -algebra *M* is the set of elements of *M*, commuting with each element from *M*. Elements of *Z*(*M*) are called central elements. A *W** -algebra *M* is called a factor, if the centre consists of the complex multiples of 1, i.e. $Z(M) = \{\lambda 1, \lambda \in \mathbb{C}\}.$

Let *A* be a Banach *-algebra over field C. Algebra *A* is called a C*-*algebra*, if $||xx^*||=||x||^2$, for any *x*∈*A*. A real Banach *-algebra *R* is called a *real* C*-*algebra*, if $||xx^*||=||x||^2$ and an element 1+*xx*^{*} is invertible for any $x \in R$. It is easy to see that R is a real C*-algebra if and only if a norm on R can be extended onto the complexification $A = R + iR$ of algebra R so that algebra A is a C*-algebra (see [8, 5.1.1]). A real *-subalgebra is called a real *W**- *algebra* if it is closed in the weak operator topology, $1 ∈ R$ and $R ∩ iR = \{0\}$. The smallest complex *W*^{*}-algebra *M* containing *R* coincides with its complexification, $R+iR$ i.e. $M = R+iR$. We say that a real W^* -algebra R is of the type I_{int} , I_{∞} , I_I , $I\!I_{\alpha}$ or III_1 ($0 \leq \lambda \leq 1$) if the enveloping *W**-algebra *R+iR* has the corresponding type in the ordinary classification of *W**-algebras.

Now, recall that some definitions and facts from the theory of complex and real *AW**-algebras (see [9]). Let *A* be a real or complex *-algebra. Let *S* be a nonempty subset of *A*. We consider the sets

 $R(S) = \{x \in A | s x = 0 \text{ for all } s \in S\}, L(S) = \{x \in A | x s = 0 \text{ for all } s \in S\}$

Set *R*(*S*) is called the right-annihilator of *S* and set *L*(*S*) is called the left-annihilator of *S*. A *-algebra *A* is called a Baer *-algebra if for $\forall S \subset A$, $S \neq \emptyset$, $R(S) = gA$ for an appropriate projection *g*. Since $L(S) = (R(S^*))^* = (hA)^* = Ah$, the definition is symmetric and can be given in terms of the leftannihilator and a suitable projection *h*, here $S^* = \{s^* | s \in S\}$. A complex (respectively, real) C*-algebra *A*, which is a Baer *-algebra is called an *AW*-algebra* (respectively, real *AW*-algebra*). It is easy to show that any W*-algebra is an AW*-algebra (see [9], Proposition 9, page 24). In [10], the author showed that the converse is not true. As is known that if R is a real C^* - or W*-algebra, then, its complexification R+iR is C^* - or W*-algebra, respectively. However, this is not true for real AW*algebras, i.e., there exists a real AW*-algebra for which the complexification is not an AW*-algebra [11, Proposition 4.2.3]. The theory of C^* -, AW^{*}- and W^{*}-algebras can also be found in detail in the works [8], [9], [11], [12], [13], [14], [15], and [16].

2-LOCAL AUTOMORPHISMS AND ANTI-AUTOMORPHISMS ON REAL AND COMPLEX AW*-ALGEBRAS

Recall that if A is an algebra and *θ*: A*→*A is a linear map with the property *θ*(*x*o*y*) = *θ*(*x*)o *θ*(*y*), then, θ is called a Jordan *-automorphism, where $xoy = (xy + yx)/2$ is the Jordan multiplication. It is obvious that if $\theta(x^2) = \theta(x^2)$ (for all *x*), then, by the linearity of θ , we obtain $\theta(xy+yx) = \theta(x)$ *θ*(*y*) + *θ*(*y*) *θ*(*x*) and hence, *θ* is a Jordan *-automorphism. It is easy to show that if Θ is 2-local *-automorphism (respectively, *-anti-automorphism) of *A*, then, $\Theta(x^2) = \Theta(x^2)$, $\forall x \in A$. Therefore, if 2-local *-automorphism (respectively, *-anti-automorphism) *θ* is linear, then, *θ* is a Jordan *-automorphism.

The main result of this article is the following theorem.

2-LOCAL AUTOMORPHISMS AND ANTI-AUTOMORPHISMS ON REAL AND COMPLEX 67 *AW*-ALGEBRAS*

Theorem 3.1. If *A* is a complex (respectively real) *AW**-algebra without finite type *I* direct summands, then every 2-local anti-automorphism of *A* is an anti-automorphism. In the real *AW** algebra case, it is assumed that its complexification is an *AW**-algebra, every 2-local automorphism of is an automorphism.

In order to prove the theorem, the representation of the real *AW**-algebra in the form of matrix algebras over a unital real Banach algebra is used, which has the following properties.

(J): if α is a Jordan automorphism of A, then, there is a decomposition $A = A_1 \oplus A_2$ of A with 1) the map *A* $\check{A}x \to p_1(a(x)) \in A_1$ being a homomorphism; and, 2) the map $\check{A}x \to p_2(a(x)) \in A_2$ being an anti-homomorphism. Here, p_1 is a projection from *A* onto A_i ($i = 1,2$).

(M): $\exists x, y \in A$ with $xy = 0$ and $yx \neq 0$.

As shown in [17], for any unital complex Banach algebra *A* with properties (J) and (M), every 2-local automorphism of $M_{2^n}(A)$ is an automorphism, where $M_{2^n}(A)$ is the algebra of 2^n -th order matrix over algebra *A*.

The proof of Theorem 2.1 from [17б] can be done in a similar way for 2-local antiautomorphisms of $M_{2^n}(A)$, and moreover, this proof without changes passes for real Banach algebras as well. Therefore, we can formulate this result for real Banach algebras.

Theorem 3.2. If A is a unital complex (respectively, real) Banach algebra with the properties (*J*) and (*M*), then any 2-local anti-automorphism (respectively, 2-local automorphism) on $M_{2^n}(A)$ is an anti-automorphism (respectively, automorphism).

In order to describe 2-local anti-automorphisms and automorphisms on complex and real *AW** algebras, we apply Theorem 3.2.

Proof of Theorem 3.1. Firstly, by Theorem 3.3 from [18] (see also Theorem 3.2.3 [15]), every C^* -algebra, and hence, AW*-algebra, has the property (J). Then, any real C^* -algebra, and hence, real AW*-algebra, also has the property (J). Indeed, let *A* be a real AW*-algebra and let *θ* be a Jordan automorphism on *A*. We extend it by linearity to the enveloping C*-algebra $A_C = A + iA$ as Θ $(x + iy) = θ(x) + iθ(y)$. It can be shown directly that Θ is also Jordan automorphism of A_c . Then, the algebra A_c has a decomposition $A_c = A_c^T \oplus A_c^2$, such that the map $A_c A_x \rightarrow p_1(\Theta(x)) \in A_c^T$ is a homomorphism, and the map $A_c \vec{A}x \rightarrow p_2(\Theta(x)) \in A_c^2$ is an anti-homomorphism. Here, $p_i: A_c \rightarrow A_c^i$ is a projection (*i*=1,2). Then, for $A_i = A_i^i \cap A$ (*i* = 1,2) the algebra *A* also has a decomposition $A = A_1 \oplus A_2$ *A*₂ such that the map $A\check{A}x \to q_1(\theta(x)) \in A_1$ is a homomorphism, and the map $A\check{A}x \to q_2(\theta(x)) \in A_2$ is an anti-homomorphism, here, $q_i = p_i | A_i$ is a projection: $A \rightarrow A_i (i = 1, 2)$.

By Proposition 4.4.3 [11,] any non-abelian real AW*-algebra can be decomposed along a central projection into the direct sum of real AW*-algebras of types I_n , $n \ge 2$, I_{∞} , *II* and *III*. According to the conditions of the theorem, A is an algebra without finite I-type direct summands. Hence, there are mutually orthogonal central projections $z_1, z_2, z_3 \in A$ with $A = z_1 A \oplus z_2 A \oplus z_3 A$. Here, algebras $A = z_1$ *A*, $z_2 A$ and $z_3 A$ have types I_{∞} , *II* and *III*, respectively.

Similarly, following the scheme of the proof of Lemmas 4.5; 4.12 [1] and using the methods developed in [11, §§4.3-4.7], and also applying the result to each term, it is implied that element *zi* ϵ *z_i*</sub> $(i = 1,2,3)$ can be represented as a sum of orthogonal, mutually equivalent projections $e_1^{(i)}$, $e_2^{(i)}$, $e_3^{(i)}$, $e_4^{(i)} \in z_4$ *(i*=1,2,3). Put $e_k = \sum_{k=1}^3 e_k^{(i)}$, $k=1,4$. Hence, the mapping $x \to \sum_{k=1}^4 e_k x e_j$ defines an isomorphism: *i*=1 4 *i,j*=1

 $A \rightarrow M_4(B)$, where $B = e_{1,1} A e_{1,1}$. It is not difficult to show that algebras $B + iB$ and *B* are complex and real C*-algebras, respectively. According to [9, Proposition 8 (iii), 23p.], for any projection $e \in A_c$ algebra $eA_c e$ is an AW*-algebra, as $A_c = A + iA$ is an AW*-algebra. Then, algebra $B = e_{1,1} A e_{1,1}$ is also a real AW^{*}-algebra (see Proposition 4.3.1[11]). Moreover, its complexification $B + iB = e_{1,1}A_c e_{1,1}$ is also an AW*-algebra. Hence, *B* has the property (J). Moreover, *B* also satisfies the condition (M), as it contains a subalgebra isomorphic to $M_2(\mathbb{R})$. For instance, for matrices:

$$
x = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}
$$

We have *yx≠*0, *xy≠*0. Then, according to Theorem 3.2, every 2-local automorphism of *A* is an automorphism. Similarly, in complex cases, algebra *B* also has the properties (J) and (M). Hence, again, according to Theorem 3.2, every 2-local anti-automorphism of *A* is an anti-automorphism. Theorem proved.

Remark 3.1. According to the condition of the theorem, we require that the complexification *A*+*iA i*s an AW*-algebra. In addition, the definition of a real C*-algebra requires the condition that an element $1 + xx^*$ is invertible (for all *x*). But in [9] (see Exercise 14A), this condition is absent, i.e., the reversibility of element $1 + xx^*$ is not required.

Therefore, naturally, the following problem arises.

Problem: Suppose that *A* is a real Baer *-ring. Let:

(a) *A* be a real Banach *-algebra such that $||xx^*||=||x^2||$, (*x*∈*A*), or,

(b) *A* be a real AW*-algebra for which its complexification is not necessarily an AW*-algebra.

Then, is every 2-local automorphism (anti-automorphism) of *A* an automorphism (respectively, an anti-automorphism)?

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

- [1] Kadison, R. V. (1990). Local derivations. *Journal of Algebra*, *130*(2), 494-509. https://doi. org/10.1016/0021-8693(90)90095-6
- [2] Johnson, B. E. (2000). Local derivations on C*-algebras are derivations. *Transactions of the American Mathematical Society*, *353*(1), (2000), 313-325. https://www.ams.org/journals/ tran/2001-353-01/S0002-9947-00-02688-X/S0002-9947-00-02688-X.pdf
- [3] Larson, D. R., & Sourour, A. R. (1990). Local derivations and local automorphisms. *Proceedings of Symposia in Pure Mathematics*, *51,* 187-194. DOI: https://doi.org/10.1090/pspum/051.2
- [4] Karimov, U. (2020). On the local derivations on real W*-algebras. *Bulletin of the Institute of Mathematics*, *4*, 23-28.
- [5] Semrl, P. (1997). Local automorphisms and derivations on *B*(*H*). *Proceedings of the American Mathematical Society*, *125*(9), 2677-2680.
- [6] Kim, S. O. & Kim, J. S. (2004). Local automorphisms and derivations on *Mn* . *Proceedings of the American Mathematical Society*, *132*, 1389-1392.
- [7] Rakhimov, A. A., Nazarov, Kh. A., & Khoshimov, A. S. (2020). 2-Local *-automorphisms on real W*-algebra *B*(*Hr*). *Uzbek Mathematical Journal*, *4,* 111-116. DOI: 10.29229/uzmj.2020- 4-12
- [8] Li, B.-R. (2003). *Real operator algebras* (pp. 241). World Scientific Publishing Co. Pte. Ltd.
- [9] Berberian, S.K. (1972). *Baer *-rings* (Vol. 195). Berlin Heidelberg: Springer-Verlag.
- [10]Dixmier, P. J. (1951). Sur certains espaces consid.er.es par M. H. Stone (*). *Summa Brasiliensis Mathematicae*, *2,* 151-182.
- [11] Ayupov, Sh. A., & Rakhimov, A. A. (2010). *Real W*-algebras, Actions of groups and Index theory for real factors* (pp. 138). Beau-Bassin, Mauritius: VDM Publishing House Ltd.
- [12]Ayupov, Sh. A., Rakhimov, A. A., & Usmanov, Sh. M. (1997). *Jordan, real and lie structures in operator algebras* (pp. 235). Springer Dordrecht.
- [13]Dadakhodjaev, R. A., & Rakhimov, A. A. (2021). 2-Local derivations of real AW*-algebras are derivation. *Positivity*, *25*, 13511356.
- [14]Rakhimov, A. A., & Nurillaev, M. E. (2018). On property of injectivity for real W*-algebras and JW-algebras. *Positivity*, *22,* 1345-1354.
- [15]Brattelli, O., & Robinson, D. (2002). *Operator algebras and quantum statistical mechanics* (2nd ed., pp. 517). Springer-Verlag Berlin Heidelberg New York.
- [16] Takesaki, M. (1979). *Theory of operator algebras I*. Springer-Verlag, New York.
- [17]Ayupov, Sh. A., & Kudaybergenov, K. K., & Kalandarov, T. (2019). 2-local automorphisms on AW*-algebras. In *Positivity and Noncommutative Analysis*. Birkhäuser Cham.
- [18]Stormer, E. (1965). On the Jordan structure of C*-algebras. *Transactions of the American Mathematical Society*, *120*, 438-447.