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Marine resources management is increasingly crucial due to the growing 
awareness that these resources are limited. Effective fish landing management 
plays a pivotal role in making informed decisions, particularly in preserving 
fish stocks for future food security. This paper aims to develop the best model 
for forecasting monthly fish landings in East Coast Peninsular Malaysia using 
the Box-Jenkins method and Artificial Neural Networks (ANN). The monthly 
dataset was divided into training data (January 2012 to December 2019) and 
testing data (January 2020 to December 2021). Employing the Box-Jenkins 
approach, the SARIMA model (1,1,0)(0,1,1)12 with minimum AIC and BIC 
values was identified as the most effective. By utilising lag variables from the 
SARIMA model as inputs for the ANN, we developed the SARIMA-ANN 
model. Model accuracy was assessed using the mean absolute percentage error.  
The findings showed that the integration of the SARIMA–ANN model enhances 
accuracy in forecasting the monthly fish landing performance in East Coast 
Peninsular Malaysia. 

© UMT Press

INTRODUCTION 
The fishing industry has played a significant role in ensuring food security in Malaysia, contributing 
to employment and fostering economic growth. With growing awareness of the limited nature of 
marine resources, effective management has become vital. Making informed decisions is crucial for 
managers to uphold food security sustainability, given that fish serves as the primary source of protein 
for many. The shortage of fish landing required agencies like the Fisheries Development Authority 
of Malaysia (LKIM) to maintain stocks of frozen fish held by companies to address market supply 
gaps. As highlighted by [1], weather-related downtimes, particularly during the monsoon season, 
significantly impact fishing operations in Peninsular Malaysia. It is estimated that approximately 
75% of fishermen are unable to venture to sea during this period.  

Therefore, the forecasting of fish landing is essential to address these challenges. As noted by 
[2], time series analysis of fishery landings plays a vital role in fisheries management and decision-
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making, as it can reveal trends and seasonality patterns in the data. With the appropriate model, 
predicting fish landing can empower managers to make effective decisions in ensuring a stable 
fish supply for the country. Time series modelling proves to be a valuable tool, widely applied 
in various studies, including fisheries. Previously, several researchers have implemented different 
models, such as discrete wavelet transform- autoregressive integrated moving average (ARIMA), 
nonlinear regression and ARIMA transfer function [3]. However, there is a noticeable gap in studies 
specifically focusing on forecasting fish landing performance in Malaysia. 

Researchers have employed various methods and approaches in forecasting fish landings. For 
this study, an approach integrating Seasonal ARIMA (SARIMA) and artificial neural network (ANN)  
was selected based on the behavioural characteristics of the time series data (monthly fish landing in 
East Coast Peninsular Malaysia). However, the efficiency of the integrated SARIMA-ANN model 
in predicting the fish landing performance is a novel exploration, as researchers have not yet applied 
this method predicting of fish landing performance in Malaysia. Therefore, this paper proposes to 
investigate the integration between SARIMA and ANN, with the aim of predicting monthly fish 
landing data and evaluating its performance. Developing the best prediction model for monthly 
fish landing could greatly assist in managing fish stocks, providing valuable insights for estimating 
future time series of fish landing performance.  

FORECASTING MODELS
Accurate prediction of fish landing values is crucial for effective fish stock management, with fish 
stock identification being a key component in modern fisheries management [4]. While information 
on fish stocks is considered vital, there remains a scarcity of case studies related to stock assessment 
in fisheries management. In this context, [4] presented a case study aimed at identifying stock 
problems and outlining future directions for fish stock management. Fisheries management 
necessitates comprehensive information to estimate the size of fish stocks and provide guidance on 
the sustainable level of catches. According to the 2020 State of World Fisheries and Aquaculture 
report, ineffective fisheries management in some regions has led to poor and deteriorating fish stock 
conditions. The uneven progress in fisheries management highlights the urgent need to replicate and 
adapt successful policies in these regions. The most important aspect of sustainable management is 
making informed decisions, requiring information and historical trends for assessing fisheries status, 
including baseline information on the past and current usage patterns of the area [5].

Raman et al. [6] conducted a study on forecasting marine fish landing in Odisha using the 
ARIMA model. Data for the analysis was sourced from the ‘National Marine Fisheries Data Centre’ 
of the Central Marine Fisheries Research Institute, Kochi, covering the period from 1985 to 2012. 
The study aimed to estimate short-term forecasting by fitting the ARIMA model in two scenarios: 
One accounting for intervention in the model and the other involving log-transformed data.  The 
results revealed that the model with log-transformed data performed better with the ARIMA (2, 0, 2) 
(0, 1,4)4  model than the intervention component model with ARIMA (0, 1, 1) (0, 1, 1)4.

According to [7, 6], ARIMA stands out as the most widely utilised model for forecasting 
time series data. However, a notable weakness of this model lies in its assumption of linearity. 
Since it is uncommon for time series to contain linear components, relying solely on ARIMA may 
not be sufficient in modelling and forecasting. The time series analysis of marine fish landing, 
spanning January 2023 to December 2019, reveals a distinct seasonal pattern. Hence, replying only 
to ARIMA might prove inadequate to accurately forecast marine fish landings. Farhan et al. [8] 
applied the SARIMA method in forecasting container throughput at ports. This method takes into 
account seasonal variations present in the time series data of container ports. The effectiveness of 
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the SARIMA model was assessed for 20 major international container ports. Evaluation metrics, 
including the Wilcoxon signed ranked test for bias determination (Hollander & Wolfe, 1999) and 
mean absolute error (MAE) and mean absolute percentage error (MAPE) for forecast accuracy, 
demonstrated the applicability and effectiveness of the SARIMA model in predicting container 
throughput at major international ports.

In an effort to aid decision-makers in setting priorities for fisheries management, [9] conducted 
a study employing the Box-Jenkins methodology to develop a SARIMA model for the monthly 
catches of two fish species over a five-year period (2007 to 2011). The stationary test, utilising the 
autocorrelation function (ACF), initially indicated that the internal organisation of the time series 
exhibited non-stationarity as it displays a hyperbolic decay pattern. Hence, appropriate differencing 
was implemented to transform the data into a stationary time series. The study concludes that the 
Box-Jenkin method is one of the most efficient and prominent approaches for forecasting time series 
data. Specifically, the SARIMA model was developed to predict the catches of Trichiurus lepturus 
(beltfish) and Amblygaster leiogaster (blue sprat) for the upcoming 5 months. The models ARIMA 
(1, 1, 0)(0, 0, 1)12 and SARIMA (0, 1, 1) (0, 0, 1)12 were identified as the best-fit models, which was 
confirmed by the Ljung-Box test. 

METHODOLOGY
Box-Jenkin Method-SARIMA Modelling Approach
The Box-Jenkins method, developed by George E.P Box and Gwilym M. Jenkins (1970), is founded 
on the principle of stinginess [10]. Its objective is to discern the most optimal and reliable model 
capable of forecasting future values for a given time series. The autoregressive moving average 
(ARMA) is a stationary series that combines the autoregressive (AR) and moving average (MA) 
models and is effective for explaining stationary time series.  The general representations of AR, MA 
and ARMA models are as follows:

AR: yt = μ + Ø1 yt-1+ Ø2 yt-2 + ... + Øp yt-p + εt ,                             (1)

where yt is the current value of the dependent variable, yt-p depends on the value of the dependent or 
current values, Øj is the parameter to be estimated, and εt is the term error. 

MA: yt = μ -θ1 εt-1 - θ2 εt-2- ... - θq εt-q + εt ,                   (2)

where μ is the mean variable size, and θ is the estimated moving average parameter.
ARMA: (1-Ø1 B-Ø2 B

2 -...- ØpB
p) yt = μ + (1-θ1B-θ2B

2 -...- θqB
q) εt                (3)

where Øpis the autoregressive parameter, μ is a constant coefficient, and the values of p and q 
obtained through AR (p) and MA (q) contribute to developing the ARMA model. 

The ARIMA model is applied to non-stationary data through a differencing process. It is 
categorised into non-seasonal and seasonal ARIMA models. The general expression of the non-
seasonal ARIMA (p,d,q) model can be defined as:

Øp (B)(1-B)d yt= θq(B)at                         (4)

where d is a sequence of differences, Øp(B) is represented as the stationary autoregression operator 
Øp(B) = (1-Ø1 B - … . ØpB

p), while θq(B) is the invertible moving average defined as θq(B) = (1-θ1B 
- … . θpB

p). The term (1-B)d yt denotes the differencing operator.
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The seasonal ARIMA is capable of modelling time series data containing seasonal periodic 
components, represented as SARIMA(P, D, Q), where P is the seasonal autoregression parameter, D 
is the seasonal differencing parameter, and Q is the seasonal moving average parameter. To address 
this seasonal series, Box-Jenkins recommends the following model:
     Øp (B)Φp (B)(1-B)d (1-Bs)DYt= θq(B)θQ (B

S)at                (5)

where s refers to the number of periods per season. 
To select the best-fit SARIMA model, two commonly used goodness-of-fit criteria are Akaike’s 

Information Criterion (AIC) and Schwarz Bayesian Information (BIC). The model with the lower 
AIC and BIC values is considered the most adequate for the data [10].  The formulas for AIC and 
BIC are as follows: 

                      (6)

                     (7)

where n is the number of observations, SSE is the sum of squared error and k is the summation of 
non-seasonal and seasonal parameters (p+q+P+Q+s) [11]. 

Artificial Neural Networks
ANN are computational models inspired by the functioning of biological nervous systems, 
particularly the human brain, in processing information. ANN are composed of multiple layers of 
simple processing elements known as neurons [12]. The structure of ANN includes an input layer, 
hidden layers and an output layer. There are two types of ANN: Feedforward and recurrent neural 
network.  In a feedforward ANN, information moves in only one direction from the first tier onwards 
until it reaches the output node. On the other hand, a recurrent neural network operates by storing 
the output of a particular layer and feeding it back to the input. In this study, a feedforward ANN, 
specifically a multilayer feedforward neural network, was selected.

Multilayer Feedforward Neural Network 
A multilayer network consists of at least one hidden layer. As explained by Haykin [13], the inclusion 
of one or more hidden neurons serves the purpose of intervening between the input and output 
layers, allowing the network to extract higher-order statistics. The term “feedforward” indicates that 
the output from one layer of neurons is forwarded into the next layer. The inputs are fed into the 
units making up the input layers, and they are weighted and simultaneously transmitted to a second 
layer, referred to as a hidden layer. The hidden layer units will generate outputs, serving as input to 
another hidden layer. The overall process of the multilayer feedforward neural network is illustrated 
in Figure 1.  
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Figure 1: The architecture of the multilayer feedforward neural network model with one hidden layer, N input 
nodes, H hidden nodes and one output node

The connection between neurons is denoted as a weight, and each neuron consists of summing 
and activation functions. The value Ŷ with N input nodes, H hidden nodes and one output node is 
expressed as:

                                   (8)

where the wj represents the output weight from hidden node j to the output node, w0 is the bias for  
the output node, and g2 is an activation function. The values of the hidden nodes hj, j =1,2,3 ...,H 
are given by:
     (9)

In this equation, vji  is the input weight between the input node i to hidden node j, vj0 is the bias 
for hidden node j, and yt,i represents the lag variables. The lag variables (yt,i ,..., yt,N) correspond to (yt-i 
,..., yt-N), where i = 1,2,...,N. The activation function g1 may be the same as g2 or a different function, 
as noted by [13]. 

To determine the best model, it is essential to classify the transfer function, the appropriate data 
transformation, the best training algorithm, the number of hidden nodes, and the combination of lag 
variables from the SARIMA model.  The MATLAB software was used for this process. 

Evaluating Model Performance
After obtaining possible SARIMA models, accuracy must be assessed using standard error metrics: 
Mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE) and mean 
absolute percentage error (MAPE). These metrics are commonly used for evaluating time series 
performance and are defined by the following formula:

1.                                                         (10)
2.                (11)
3.                 (12)
4.                (13)
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Here, ŷt represents the forecasted value at point t,yt is the original data value, and n is the 
total number of data points. Lewis [14] (1982) devised a table of MAPE values for industrial and 
business data, providing a benchmark for interpreting forecasting performance, a practice adopted 
in various studies. This study is interpreted based on MAPE values from Lewis as shown in Table 1.  

Table 1: The level of forecasting based on the MAPE values (Lewis, 1982)

MAPE Interpretation
< 10% High accuracy forecasts

10%-20% Good forecasting
20%-50% Reasonable forecasting

> 50% Inaccurate forecasts

RESULTS AND DISCUSSION
This section discusses the results of the best prediction model, comparing the single ARIMA method 
with the integrated SARIMA and ANN models. The dataset spans 10 years (January 2012 to December 
2021) and pertains to monthly fish landing in East Coast Peninsular Malaysia, encompassing the 
states of Kelantan, Pahang, and Terengganu. Data was sourced from the Department of Fisheries 
Malaysia’s website and divided into two sets: in-sample data covering January 2012 to December 
2019, and out-sample data covering January 2020 until December 2021.

Seasonal Autoregressive Integrated Moving Average 
The time series plot of the in-sample data, as depicted in Figure 2, suggests that the series is non-
stationary. Therefore, a prerequisite for fitting the ARIMA model involves the removal of the the 
trend and stabilisation of variance through seasonal differencing. Figure 2 illustrates the time series 
plot of the first difference of fish landing time series data, indicating the stationary in mean. 

 Figure 2: The time series plot of fish landing in East Coast Peninsular Malaysia
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 Figure 3: The plot of the first differences in fish landing on the East Coast

The plot of fish landing in East Coast Peninsular Malaysia, utilising 1st differenced data as 
shown in Figure 3, indicates stationarity in mean. Further exploration through the ACF and partial 
ACF (PACF) plots of 1st differences (Figures 4 and 5) reveals significant spikes in lags 12, indicating 
the presence of seasonality in the monthly fish landing in East Coast Peninsular Malaysia, with a 
periodicity of 12. Consequently, seasonal differencing of the 1st non-seasonal differenced data is 
warranted. 

Figure 4: The PACF plot (at 1st differencing order)
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Figure 5: The ACF plot (at 1st differencing order)

Figure 6: The PACF plot of the seasonal difference (at 1st seasonal differencing order)

Figure 7: The ACF plot of the seasonal difference (at 1st seasonal differencing order)



Nor Azlyn Ezura Hasmin and Norizan Mohamed    18

Journal of Mathematical Sciences and Informatics, Volume 3 Number 2, December 2023, 10-23

Analysis of the PACF in Figure 6 reveals spikes at lag 1, lag 4 and lag 6 for the non-seasonal 
part. Meanwhile, the ACF in Figure 7 exhibits a cutoff at lag 1. Considering statistical simplicity 
and the principle that complex methods may not necessarily yield more accurate forecasts [15], it 
is suggested to exclude lag 4 and lag 6 in the PACF. Therefore, the proposed model for ARIMA is 
ARIMA (1,1,1).

The ACF and PACF analyses for seasonal differences reveal that ACF and PACF spikes at 
seasonal lag 12 diminish to zero for other seasonal lags, suggesting P=1 and Q=1. The SARIMA 
model proposed under this finding process is SARIMA (1,1,1)(1,1,1)12. However, instead of testing 
only one model, a thorough examination involved the exploration of eight possible models in terms 
of parameter selection, as outlined in Table 2.

Table 2: The AIC and BIC values for the SARIMA models

SARIMA MODELS AIC VALUES BIC VALUES
(0,1,1) (0,1,1)12 20.69642 20.80327
(1,1,1) (1,1,1)12 20.7382 20.89847
(1,1,1) (0,1,1)12 20.71787 20.85143
(1,1,1) (1,1,0)12 21.01111 21.14467
(1,1,0) (1,1,0)12 20.99351 21.10035
(0,1,1) (1,1,1)12 20.71584 20.8494
(1,0,0) (1,1,1)12 20.70262 20.80947
(1,1,0) (0,1,1)12 20.67209 20.77894

According to the results of the AIC and BIC of all possible models, it shows that the best 
SARIMA models are SARIMA (0,1,1)(0,1,1)12 and SARIMA (1,1,0) (0,1,1)12. 

Table 3: The significant values of the parameters for both models 

Models  Parameters Significant Parameter (P-value)

SARIMA (0,1,1) (0,1,1)12

MA   1 0.000

SMA  12 0.000

 
SARIMA (1,1,0) (0,1,1)12

AR   1 0.001

SMA  12 0.000

As presented in Table 3, the p-value of both models SARIMA (0,1,1)(0,1,1)12 and SARIMA 
(1,1,0)(0,1,1)12 are statistically significant since the parameter values of each model are smaller than 
0.05. However, based on the performance of MAE, MSE and RMSE for the out-sample data, as 
shown in Table 4, SARIMA (1,1,0)(0,1,1)12 outperforms SARIMA (0,1,1)(0,1,1)12. 
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Table 4: The performance of the SARIMA models

Models In-Sample Out-Sample
MAE MSE RMSE MAE MSE RMSE

SARIMA (0,1,1) (0,1,1)12 2516.5 10791238 3285.0 3984.1 21876169 4677.1
SARIMA (1,1,0) (0,1,1)12 2523.5 10531849 3245.2 3614.1 19152425 4376.3

Models
MAPE In-Sample 

sample
MAPE Out-sample

SARIMA (0,1,1) (0,1,1)12 9.5243 22.9668
SARIMA (1,1,0) (0,1,1)12 9.6307 20.0154

The next step in identifying the best-fit model involves considering the MAPE for both in-
sample and out-sample monthly fish landing data. A lower MAPE indicates smaller differences 
between forecasted and actual data. The result presented in Table 4 show that the in-sample MAPE 
for the SARIMA (0,1,1)(0,1,1)12 model is slightly smaller than that of the SARIMA (1,1,0)(0,1,1)12 
mode, suggesting that SARIMA (1,1,0)(0,1,1)12 is the best fit for in-sample time-series. However, 
when assessing out-sample performance, SARIMA model (1,1,0)(0,1,1)12 outperforms SARIMA 
(0,1,1)(0,1,1)12, with a lower MAPE of 20.0154% as compared with 22.9668%. Consequently, the 
SARIMA model (1,1,0)(0,1,1)12  is identified as the best fit for monthly fish landing data. This model 
can be expressed as yt = 0.655yt-1 + 0.345yt−2 + yt−12   0.655yt−13  0.345yt−14 + at − 0.8606at-12 

Figure 8: The performance of the SARIMA model for monthly fish landing in East Coast Peninsular Malaysia 
for the period of January 2019 to December 2021

As illustrated in Figure 8, the in-sample and out-sample forecast data for the SARIMA (1,1,0)
(0,1,1)12 model closely align with the actual data. The results in Table 4 further support this 
observation, indicating high accuracy forecasts for in-sample data and good forecasts for out-sample 
data.
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SARIMA-ANN
The selected SARIMA model’s input is supplied to the Artificial Neural Network (ANN) model, 
forming a basic ensemble method. The number of hidden layers is set at the default of 10 hidden 
nodes. The log-sigmoid function serves as the transfer function in the hidden layer, and the linear 
transfer function in the output layer. The Levenberg-Marquardt method is employed for the training 
algorithm. With SARIMA (1,1,0)(0,1,1)12, the input variables comprise 5 lag variables: yt−1, yt−2, yt−12 , 
yt−13 , and yt−14, serving as input variables for the ANN. The process begins by determining the optimal 
number of hidden nodes, ranging from 1 to 10. Table 5 presents the results of MAPE for both the 
training and testing phases for each hidden node.

Table 5: The MAPE testing and training for each number of hidden nodes

Hidden Nodes MAPE Testing MAPE Training
1 9.9063 20.2215
2 9.3084 20.3998
3 8.2532 19.3145
4 6.0891 19.7785
5 6.2138 23.0585
6 4.9967 25.0176
7 4.1164 20.7151
8 3.4314 23.5139
9 1.9511 37.9907
10 1.2116 40.3029

Hidden node 3, with the lowest MAPE value, is considered the optimal outcome.  The next step 
involves determining the best combination of lag variables, ranging from one lag variable to five 
lag variables.

Table 6 provides a summary of the best performance, and Table 7 further consolidates the 
results. The optimal number of input nodes is determined to be three (3), representing a combination 
of lag variables yt-12, yt-1, yt-13. The architecture of these inputs is illustrated in Figure 9.

Table 6: The result of combination of input lag variables

Input Variables MAPE Training MAPE Testing
yt-1 16.5389 29.0417
yt-2 23.8731 58.4280
yt-12 15.4365 27.9546
yt-13 21.1023 47.7769
yt-14 26.0293 66.5311

yt-12, yt-1 12.2748 18.5385
yt-12, yt-2 14.3494 26.9270
yt-12, yt-13 15.5949 26.9423
yt-12, yt-14 14.5067 25.8596

yt-12, yt-1, yt-2 11.2863 17.8618
yt-12, yt-1, yt-13 10.0606 15.3782
yt-12, yt-1, yt-14 8.116 19.6086

yt-12, yt-1, yt-13, yt-2 8.4376 18.1713
yt-12, yt-1, yt-13, yt-14 8.2651 21.3415

yt-12, yt-1, yt-13, yt-2, yt-14 9.1191 19.4621
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Table 7: The summary of input lag variables

Input Variables MAPE Training MAPE Testing 
yt-12 15.4365 27.9546

yt-12, yt-1 12.2748 18.5385
yt-12, yt-1, yt-13 10.7247 15.276

yt-12, yt-1, yt-13, yt-2 8.4376 18.1713
yt-12, yt-1, yt-13, yt-2, yt-14 9.1191 19.4621

Figure 9: The architecture of the best SARIMA-ANN model with three input nodes, three hidden nodes and 
one output node, log-sigmoid transfer function in the hidden layers and linear transfer function in the output 

layer

Discussion
Figure 10 visually demonstrates that the SARIMA-ANN model for monthly fish landing in East 
Coast Peninsular Malaysia is highly effective as a forecasting model. Both the in-sample forecast 
data and out-sample forecast data closely align with the actual data. This robust performance is 
reflected in the in-sample and out-sample MAPE values, both of which are less than 20%. 

Figure 10: The performance of the SARIMA-ANN model for monthly fish landing on the East Coast in 
Peninsular Malaysia for the period of January 2019 to December 2021

h1

h3h2

w0

wi
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The results in Table 8 clearly indicate that the application of the SARIMA method alone 
is not as effective as combining SARIMA with ANN in the SARIMA-ANN method. Statistical 
evidence supports the conclusion that the integration of SARIMA and ANN demonstrates superior 
performance compared to using SARIMA alone. 

Table 8: A comparison of the performance of SARIMA and SARIMA-ANN 
Model In-Sample Out-Sample

MAE MSE RMSE MAE MSE RMSE
SARIMA 2,523.5 10,531849 3,245.2 3,614.1 19,152425 4,376.3

SARIMA-ANN 2.82472 1.375353 1.17275 2.47961 9.71628 3.11709

Model MAPE Training MAPE Testing 
SARIMA 9.6307 20.0154

SARIMA-ANN 10.7247 15.2760

CONCLUSION
The rising demand for fish sources correlates with the growing human population, exerting constant 
pressure on marine resources. The challenges and potential limitations in managing these resources 
are intricate and not easily observable or calculable, adding complexity to the situation. This study 
aims to develop an optimal model for Monthly Marine Fish Landing in East Coast Peninsular 
Malaysia using ARIMA and ANN. Two approaches, namely single SARIMA and SARIMA-
ANN methods, were compared. Several possible SARIMA models were developed, and accuracy 
evaluations based on AIC and BIC values identified SARIMA (1,1,0)(0,1,1)12 as the best forecasting 
model. To further enhance model performance, ANN was employed due to its capability to learn 
and model non-linear time series, enabling the model to generalize and predict unseen data. The 
out-of-sample MAPE results indicate that SARIMA-ANN outperformed SARIMA in forecasting 
fish landing in the East Coast Peninsular Malaysia.

This study aims to provide valuable suggestions to stakeholders by highlighting the SARIMA-
ANN method as one of the most effective approaches for forecasting single time-series data, 
particularly monthly fish landing in East Coast Peninsular Malaysia. The utilization of this method 
can significantly contribute to enhancing managers’ confidence in employing a reliable forecasting 
mechanism for informed decision-making in the near future. Despite the widespread recognition of 
the importance of fish stock management information in fisheries management, there remains a gap 
in the implementation of statistical techniques by responsible agencies to support decision-making 
on fish stock management. Inefficient management of fish stocks may result in fish shortages, 
especially during low landing seasons, subsequently causing an increase in fish prices. Therefore, 
agencies, such as LKIM, must efficiently identify the amount of fish stock to be kept frozen to 
stabilise the supply and prevent disruptions in the market.
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