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The stock market is an example of a stochastic environment in the real 
world. So, obtaining accurate forecasting models of the stock market can be 
challenging due to its complex characteristics (noisy environment), which 
result in uncertainty. Although machine learning models have been widely 
applied to forecast the market, they fail to capture the presence of stochasticity. 
As a result, a few studies had proposed a hybridisation of Multilayer 
Perceptron and stochastic processes. Hence, this review paper aims to provide 
a systematic review of these hybridised models, which have been obtained 
from the scientific databases Scopus and Web of Science. Finally, it was found 
out that only eight studies had been conducted to forecast the stock market 
with Stochastic Neural Network (SNN), and all of them concluded that it 
has better accuracy than the deterministic model. Thus, the development of 
SNN is worth exploring in the future as there is room to explore crossing 
disciplines between neural networks and stochastic processes to improve 
forecasting accuracy.

2020 Mathematics Subject Classification: © UMT Press

Introduction 
Financial Markets are one of the captivating inventions in this modern era. Johnson et al. [1] 
stated that it is an example of a complicated system in the real world. Stock markets are frequently 
associated with the financial market, which is influenced by various factors. Apart from that, Giles et 
al. [2] have categorised them into two main categories: Political and macroeconomic environments. 
In addition to that, Ji et al. [3] state that market conditions, major social and economic events, 
investors’ preferences, and companies’ managerial decisions are among the other factors that affect 
the stock market. Hence, it is classified as a high risk, high return, and flexible trading product. 
Moreover, the random events (influential factors) create a noisy environment in the stock market 
and result in uncertainty (called stochastic). This complex characteristic of the stock market makes 
it challenging to predict its future price [4-6]. Therefore, researchers are expanding their horizons in 
search of a better model that can give an accurate prediction. 

Moving on, the stock market can be forecasted using statistical models or machine learning 
models [7-11]. Moving Average models, exponential smoothing models, decomposition models, and 
Box-Jenkins models are among the statistical models [9], [10]. Setyawati et al. [9] also addressed 
that Autoregressive Moving Average (ARIMA) is the most popular and powerful time-series model 
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applied to forecasting time series data in finance. Besides that, neural networks, genetic algorithms, 
fuzzy models, and Support Vector Machines (SVM) are among the models which are categorised as 
machine learning methods. 

Various studies concluded that models based on a statistical method do not perform efficiently 
as the machine learning models [12-17]. This is because statistical models fail to capture the non-
linear pattern present in data [15]. In addition, a study concluded that Artificial Neural Network 
(ANN) outperforms ARIMA when the author forecasted the stock price of the Dell Stock Index 
from the New York Stock Exchange [17]. Figure 1 depicts the model’s predicted outcome as well 
as its actual price. From the comparative figure, it can be observed that the forecasted value using 
ARIMA, and ANN is closer to the actual stock price. However, the forecasted value with ARIMA 
results in a linear line, and the stock price forecasted with ANN follows the fluctuation of the actual 
stock price. Besides, another study on financial forecasting by Lahane [18] also concluded that 
ANN performs better for value forecasting, whereas ARIMA outperforms directional forecasting. 
It is further supported by Hiransha et al. [19], where the authors concluded that neural network 
outperforms ANN as it fails to identify the non-linearity that exists within the data. Thus, these 
studies are evidence of the higher accuracy of forecasting with neural networks because the non-
linear trend of the historical data can be identified by the neural network.

Figure 1: Graph of predicted value of ARIMA and ANN model against actual stock price [17]

Machine learning models can be classified into supervised and unsupervised learning models. 
The most popular machine learning method applied to forecasting stock prices is supervised 
learning. A general workflow of supervised learning-based machine learning to forecast stock price 
is shown in Figure 2 [20]. There are various machine learning models used to forecast stock prices, 
with ANN, SVM, and their variants being the most common [20, 21] as the forecasted results are 
promising and extremely effective. Nevertheless, these algorithms are continuously evolving.
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Figure 2: Stock market prediction model workflow with supervised learning [20]

According to Kurani et al. [22], SVM is a powerful tool to forecast with little data or real-time 
analysis required. However, the forecasts are very accurate when applied to a large dataset. With 
large datasets, SVM requires high computational cost, hence it requires a lot of time to execute the 
task. Another downfall of SVM is that it is sensitive to the provided data type. So, it is important 
to normalise the data before training with SVM. The author reviewed and evaluated past recent 
research using ANN and SVM to forecast stock price. From the analysis, the SVM models are on 
average 60% to 70% accurate. However, the average accuracy of ANN models was higher than 
SVM, at 60% to 95%. In a nutshell, ANN outperforms SVM due to its limitations, and it can be 
concluded that ANN is a better model for forecasting stock price. 

The main drawback of the classical neural network is that it is a deterministic neural network, 
which does not completely represent the stochastic environment of the market. According to Ling et 
al. [23], ANN does not fully represent the variability found in a system’s natural circumstances, nor 
do they convey the complexity of the behaviour of the entire system. The output of the deterministic 
models is fully determined by the feature’s value and initial conditions [24]. The introduction of 
randomness into these models yields stochastic models. Moreover, stochastic models result in more 
accurate future value results when the behaviour of the time series is not complex and the initial 
condition fulfils the assumption of stationary [25]. This review paper focuses on the studies that 
have integrated stochasticity into ANN or Multilayer Perceptron (MLP). 

ANN is based on the biological neural network, which is inspired by the transmission of 
information in the human brain [23, 26]. ANN is an example of a shallow neural network, and its 
extension is MLP. MLP is one of the neural networks associated with the Deep Neural Network 
(DNN). However, in most works, ANN and MLP are terms that are used interchangeably, and in 
certain studies, MLP is not classified under deep learning. In this article, MLP refers to a neural 
network with more than one hidden layer whereas ANN refers to a neural network with only one 
hidden layer. 
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This paper aims to present a systematic review of hybridised machine learning model between 
ANN/MLP and the stochastic process. In this article, the research methodology is discussed in 
the next Research Methods section, and then followed by two sections which review the related 
manuscripts and the learning theories of the implied neural network, respectively. Discussion on the 
significance of stochastic neural networks, the limitations and future research direction are presented 
before concluding the manuscript.

Research Methods
This review paper focuses on MLP/ANN which have been hybridised with the stochastic process. To 
perform the systematic review, two primary scientific paper databases, Web of Science (WoS) and 
Scopus, were selected. Titles and topics with “Stochastic Neural Network” are considered to filter 
out the articles. The filter criteria for the keywords “forecasting” and “prediction” are applied to 
the category of title, abstract, and keyword. This filtration process is done to narrow the application 
of SNN to forecasting tasks. Figure 1 shows the flow diagram of the selected articles. From the 
search 46 and 555 articles were found on Scopus and Web of Science (WoS) databases, respectively. 
After removing all the duplicate articles, and screening the abstract and full articles, an initial set 
of seven articles was selected. These articles fulfilled the objective of this review paper, where it 
should be a hybridisation between MLP and the stochastic process applied on financial forecasting. 
Another article was included based on intext citation because it was found to be relevant to the 
research scope. From this survey, it is found that very few cross-disciplinary studies are available 
on the stochastic process and neural network in the stock market. Hence, this paper provided a 
comprehensive review of these eight selected articles. 

 

Figure 3: Flow diagram of the selected articles from the database [39]
Note: Abbreviation: n, number of systematic reviews



REVIEW ON STOCHASTIC HYBRIDISATION OF FEEDFORWARD   63                              
NEURAL NETWORK IN STOCK MARKET                      
                                                                                     

Journal of Mathematical Sciences and Informatics, Volume 4 Number 1, June 2024, 59-73

Literature Review
Stochastic Time Effective Neural Network (STNN) model was first developed by Liao and Wang 
[26], to forecast the global stock index. The STNN model was developed by incorporating Brownian 
motion into loss function and applied it into ANN. It is done to allow the model to have the effect 
of random movement while maintaining the original trend of the financial market. This model was 
further improved by incorporating the jump process [27], principal component analysis [28], and 
return scaling cross-correlation function of exponential parameter [29]. Additionally, SNN model 
was proposed by incorporating random walk theory into the activation function of the neural network 
to forecast cryptocurrency prices [30]. Table 1 summarises all the selected surveyed articles in this 
systematic literature review for Figure 1. 

The architecture of the proposed STNN and its extension listed in Table 1 had one hidden layer 
and one output node. However, the number of nodes in the input and hidden layers varied. STNN 
[26], JTSNN [28, 32] had five input nodes, which comprised daily opening, closing, highest price, 
lowest price and daily traded volume of the selected stocks. Besides that, four input nodes were 
considered in the proposed model by Mo and Wang [32], Wang and Wang [33] and for STNN and 
ANN in the research by Wang and Wang [28]. PCA-STNN model had two input nodes which are 
obtained through principal component analysis with six variables (daily opening, closing, highest 
and lowest price, daily traded volume, and daily turnover) [28]. The number of input nodes and 
hidden layers varied from the ranges of seven to 10 and 11 to 19, respectively for the proposed 
STSNN model [29]. Furthermore, the number of nodes in hidden layer was 20 in STNN [26]; 
13 in JSTNN [28, 32]; eight in STNN [28, 29] and ANN [28]; 9 in PCA-STNN [28]; and the 
number hidden nodes were selected through validation for EMD-STNN [33]. In summary, these 
related articles proposed neural networks with input nodes of four or five, and one hidden layer with 
different number of nodes. Apart from that, the SNN and MLP model consist of 23 input nodes with 
five hidden layers with each layer containing 130, 100, 50, 25 and 10, respectively. 

Moving on to the performance evaluation of these models, average relative error of STNN was 
less than 10% [26], however the improved JSTNN had a mean relative error less than 5% [27] for 
all the applied financial datasets. The performance metrics MAE, RMSE, and MAPE of STNN were 
smaller in comparison to ANN when the next trading day closing price of SSE, SZSE, DJIA, IXIC, 
and S&P 500 is forecasted [32]. Similarly, the proposed STSNN outperformed the deterministic 
model (ANN) application of both the China and US stock markets [29]. Empirical results showed 
that PCA-STNN outperformed the deterministic counterpart, STNN and ANN [28]. Based on 
the evaluation criteria it was concluded that EMD-STNN had lowest prediction error and highest 
accuracy than STNN, ANN, and SVM, when NYSE, DAX FTSE, and HIS volatility is forecasted. 
STNN has the second lowest prediction error followed by ANN and SVM [33]. Jay et al. [30] 
also concluded that SNN outperformed both deterministic modes (MLP and LSTM). From these 
studies it can be concluded based on the performance metric that neural networks with stochastic 
models have an advantage over the traditional neural network model to some degree. This is because 
stochastic models are more accurate in detecting data fluctuations, modelling complex relationships 
between inputs and outputs, and identifying patterns in data than deterministic ones [29].
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Learning Theories
First, this section discusses in general the formulation of Multilayer Perceptron (MLP). Then it 
discusses the integration of stochastic processes as demonstrated in the surveyed articles.

Multilayer Perceptron
MLP is also referred to as Multilayer feed-forward neural network and feed-forward deep network. 
The pioneer of MLP is ANN, which has only one hidden layer. On the other hand, MLP is composed 
of three interconnected main layers: An input layer, an arbitrary number of hidden layers, and an 
output layer. In between each connecting layer, the weight matrix is associated, as shown in Figure 
4.

Initially, any small random value nearer to zero is assigned a weight [34]. Then, forward 
propagation is performed by computing the relationship of two layers from the input to output layer 
by integrating the activation function or transfer function [35-38]. The general form of the forward 
propagation is expressed as in Equations 1 to 3. To train the neural netwsork, a backpropagation 
algorithm is often performed by calculating the error function to modify the interconnected weights 
and biases. 

Furthermore, to forecast multivariate time series data, usually Mean Square Error (MSE), loss 
function, which is also known as error function, is used as shown in Equation 4.

Figure 4: The architecture of MLP with an arbitrary number of hidden layers

h(1) = f (1)(W(1)T X + b(1)), (1)
h(i) = f (i)(W(i)T h((i‒1)b(i)), (2)

y = f (N+1)(W(N+1)T h(N) + b(N+1)), (3)
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𝑬𝑬𝑬𝑬 =
1
2

(𝑦𝑦𝑦𝑦� − 𝑦𝑦𝑦𝑦)2 

First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
�
𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2. 

The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡)�

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2, 

where 

𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛) =  
1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)� . 

Therefore, the error function with stochastic time effective function is, 

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡), 

and hence,  

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)��

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

(𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛))2, (9) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) +  𝛾𝛾𝛾𝛾𝜉𝜉𝜉𝜉𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1), 0 < 𝛾𝛾𝛾𝛾 < 1, 
(10

) 

with  

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1) =  𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) −  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1,  

 

where

X is the input vector,

y is the output vector,

W (i) is the weight matrix in the layer ,

h(i) denotes the output of hidden layer ,

f (i)( .) denotes the activation function of layer ,

b(i) denotes the bias term in the layer ,

i  and N is the number of last hidden layer,
y is the actual value

Stochastic Neural Network Approach
A series of studies on STNN as listed in Table 1, have integrated stochasticity into the error function 
of MLP. Brownian Motion (BM), a stochastic process, is employed in the studies so that the model 
can have random movement while maintaining the original trend. The integration of BM into the 
error function E of Equation 4 is illustrated in Equations 5 to 9. The proposed error function E is 
used to train the neural network via the backpropagation algorithm.

First, the error function for  sample (n=1,2,3,.., N) can be expressed as,

𝑬𝑬𝑬𝑬 =
1
2

(𝑦𝑦𝑦𝑦� − 𝑦𝑦𝑦𝑦)2 

First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
�
𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2. 

The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡)�

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2, 

where 

𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛) =  
1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)� . 

Therefore, the error function with stochastic time effective function is, 

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡), 

and hence,  

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)��

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

(𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛))2, (9) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) +  𝛾𝛾𝛾𝛾𝜉𝜉𝜉𝜉𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1), 0 < 𝛾𝛾𝛾𝛾 < 1, 
(10

) 

with  

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1) =  𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) −  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1,  

 

𝑬𝑬𝑬𝑬 =
1
2

(𝑦𝑦𝑦𝑦� − 𝑦𝑦𝑦𝑦)2 

First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
�
𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2. 

The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡)�

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2, 

where 

𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛) =  
1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)� . 

Therefore, the error function with stochastic time effective function is, 

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡), 
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𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛
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𝑘𝑘𝑘𝑘=1

(𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛))2, (9) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) +  𝛾𝛾𝛾𝛾𝜉𝜉𝜉𝜉𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1), 0 < 𝛾𝛾𝛾𝛾 < 1, 
(10

) 

with  
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(5)
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First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 
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1
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The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 
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2
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where 

𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛) =  
1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)� . 

Therefore, the error function with stochastic time effective function is, 

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡), 

and hence,  

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)��

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

(𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛))2, (9) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) +  𝛾𝛾𝛾𝛾𝜉𝜉𝜉𝜉𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1), 0 < 𝛾𝛾𝛾𝛾 < 1, 
(10

) 

with  

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1) =  𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) −  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1,  

 

results in Equation (6),

𝑬𝑬𝑬𝑬 =
1
2

(𝑦𝑦𝑦𝑦� − 𝑦𝑦𝑦𝑦)2 

First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
�
𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2. 

The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 
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where 

𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛) =  
1
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Therefore, the error function with stochastic time effective function is, 

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡), 

and hence,  

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1
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𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)��

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

(𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛))2, (9) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) +  𝛾𝛾𝛾𝛾𝜉𝜉𝜉𝜉𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1), 0 < 𝛾𝛾𝛾𝛾 < 1, 
(10

) 

with  

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1) =  𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) −  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1,  

 

𝑬𝑬𝑬𝑬 =
1
2

(𝑦𝑦𝑦𝑦� − 𝑦𝑦𝑦𝑦)2 

First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
�
𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2. 

The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡)�

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2, 

where 
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Therefore, the error function with stochastic time effective function is, 

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡), 

and hence,  

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�
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𝑡𝑡𝑡𝑡1
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𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

(𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛))2, (9) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) +  𝛾𝛾𝛾𝛾𝜉𝜉𝜉𝜉𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1), 0 < 𝛾𝛾𝛾𝛾 < 1, 
(10

) 

with  

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1) =  𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) −  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1,  

 

(6)

where

𝑬𝑬𝑬𝑬 =
1
2

(𝑦𝑦𝑦𝑦� − 𝑦𝑦𝑦𝑦)2 

First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
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The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 
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𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
�
𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2. 

The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡)�

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2, 

where 

𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛) =  
1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)� . 

Therefore, the error function with stochastic time effective function is, 

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡), 

and hence,  

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)��

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

(𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛))2, (9) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) +  𝛾𝛾𝛾𝛾𝜉𝜉𝜉𝜉𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1), 0 < 𝛾𝛾𝛾𝛾 < 1, 
(10

) 

with  

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1) =  𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) −  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1,  

 

(8)

and hence,

‒

‒

‒
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𝑬𝑬𝑬𝑬 =
1
2

(𝑦𝑦𝑦𝑦� − 𝑦𝑦𝑦𝑦)2 

First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
�
𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2. 

The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡)�

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2, 

where 

𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛) =  
1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)� . 

Therefore, the error function with stochastic time effective function is, 

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡), 

and hence,  

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)��

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

(𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛))2, (9) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) +  𝛾𝛾𝛾𝛾𝜉𝜉𝜉𝜉𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1), 0 < 𝛾𝛾𝛾𝛾 < 1, 
(10

) 

with  

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1) =  𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) −  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1,  

 

𝑬𝑬𝑬𝑬 =
1
2

(𝑦𝑦𝑦𝑦� − 𝑦𝑦𝑦𝑦)2 

First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
�
𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2. 

The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡)�

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2, 

where 

𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛) =  
1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)� . 

Therefore, the error function with stochastic time effective function is, 

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡), 

and hence,  

𝐸𝐸𝐸𝐸� =  
1
𝑁𝑁𝑁𝑁�
�
𝑁𝑁𝑁𝑁�

𝑛𝑛𝑛𝑛=1

1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)��

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

(𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛))2, (9) 

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡 = 𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) +  𝛾𝛾𝛾𝛾𝜉𝜉𝜉𝜉𝑡𝑡𝑡𝑡 × 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1), 0 < 𝛾𝛾𝛾𝛾 < 1, 
(10

) 

with  

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛(𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙), 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1) =  𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡(∙) −  𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡−1,  

 

𝑬𝑬𝑬𝑬 =
1
2

(𝑦𝑦𝑦𝑦� − 𝑦𝑦𝑦𝑦)2 

First, the error function for 𝑛𝑛𝑛𝑛 sample (𝑛𝑛𝑛𝑛 = 1,2,3, . . ,𝑁𝑁𝑁𝑁) can be expressed as, 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
�
𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2. 

The addition of 𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡) results in Equation (6), 

𝐸𝐸𝐸𝐸(𝑛𝑛𝑛𝑛, 𝑡𝑡𝑡𝑡) =  
1
2
𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡)�

𝑘𝑘𝑘𝑘�

𝑘𝑘𝑘𝑘=1

�𝑦𝑦𝑦𝑦�(𝑛𝑛𝑛𝑛) − 𝑦𝑦𝑦𝑦(𝑛𝑛𝑛𝑛)�2, 

where 

𝜙𝜙𝜙𝜙(𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛) =  
1
𝜏𝜏𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜇𝜇𝜇𝜇(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 + �

𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛

𝑡𝑡𝑡𝑡1
𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)� . 
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(9)

where 

k is the number of output nodes, {k: 1,2,3, ..., k} ,

ϕ(t) is stochastic time strength function,

τ(>0) is the time strength coefficient,

t1 is the time of the newest data in the dataset,

tn is an arbitrary time point in the data set,

μ(t) is the drift function,

σ(t) is the volatility function,

B(t) is the standard Brownian Motion.

In contrast to all the listed studies, Jay et al. [30], stated randomness could be introduced 
through two approaches. The first would be by randomly tuning a small degree of the value of the 
weight, but as the network evolves, the feature detection gets noisy, and it may eventually forget the 
dependencies. Hence, it is emphasised that the first method is not ideal. Moreover, integration of 
stochasticity into the activation function is ideal as it can interpret the random changes in features. 
Thus, the authors added random walk (stochastic process) into the activation function, and the 
generalised formulation of the stochastic behaviour on a neural network is shown in Equation 10. It 
represents a random-like walk that considers the pattern of the reaction of the market in progressive 
time steps.
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 where 

St is the vector of post-stochastic operation,

fi (∙) is the activation values of the  time step,

γ is the perturbation factor which controls the amount of stochasticity,

ξt is the operator that produces a vector of random variables of the same 
dimension as the activation,

reaction(∙) is a general function that determines how the current activations will 
move with respect to the activation of the previous time step. 

To sum up, the integration of the stochastic process does not change the architecture of MLP. 
Still, it only adds stochasticity into the activation function and error function, which are used to 
optimise the network.

‒



REVIEW ON STOCHASTIC HYBRIDISATION OF FEEDFORWARD   69                              
NEURAL NETWORK IN STOCK MARKET                      
                                                                                     

Journal of Mathematical Sciences and Informatics, Volume 4 Number 1, June 2024, 59-73

Significance of Stochasticity in Neural Networks
ANN and MLP are efficient models in handling noisy financial data and capture complex relationships 
between the input and output mapping. They are widely applied in forecasting stock prices because 
of their self-learning and anti-jamming properties [27-30, 31-33]. However, they are deterministic 
in nature though applied to noisy environments. According to Ling et al. [23], MLP does not have 
the ability to capture the complexity of the whole system’s behaviour. Additionally, large volatilities 
in the stock markets frequently contribute to the noise in financial time series, making it challenging 
to include market data directly into a model without making any assumptions. Because stock prices 
are inherently chaotic and nonstationary, it is difficult to make reliable forecasts [27-30, 31-33]. 
The introduction of stochastic elements into a neural network became significant because it adapts 
to the market noise and has the effect of random movement in the model while maintaining the 
original trend [27-30, 31-33]. Stochastic models are significant in stock price forecasting because 
they introduce stochastic elements to neural network models, enabling them to capture complex, 
time-varying relationships in financial data, adapt to market noise, and incorporate random 
movements while preserving underlying trends. STNNs address the challenges of modelling noisy 
and nonstationary stock price data.

Research Gap and Recommendations
From this comprehensive review, it can be summarised that the stochastic process was incorporated 
into deterministic neural networks so that they can mimic and adapt to the original trend of the 
financial market and improve the accuracy of forecasting. In these reviewed studies, Brownian 
motion and jump process were incorporated into the loss function, and random walk theory was 
applied to the activation function. One of the research gaps in the studies related to STNN is that 
the model considered only one hidden layer. Hence, it is worth extending this research by increasing 
the number of hidden layers. This is because neural networks with more than one hidden layer 
perform better [40]. Furthermore, Jay et al. [30], proposed SNN by incorporating random walk 
into the activation function. To improve the neural network, it recommended that Gaussian process, 
Brownian motion and Jump process be included into the activation function. Finally, a hybridisation 
between STNN and SNN is also worth applying to forecast the stock price.

Conclusion
From this survey, it can be deduced that forecasting the stock market using a hybridised neural 
network with a stochastic process (SNN) has better accuracy in comparison to MLP. This is because 
the introduction of the stochastic process into the neural network makes the model have the effect 
of random movement while maintaining the original trend. However, from this survey, it can 
be deduced that there is plenty of room to improve the existing SNN by experimenting with the 
influential factor, tuning the perturbation factor, and different stochastic processes. Furthermore, 
the research on the hybridisation of stochastic processes with neural networks has yet to investigate 
many areas; therefore, the application on financial time series forecasting is worth exploring to 
improve the neural network’s performance. Unfortunately, at this point in time, there are very few 
studies available in this field; thus, more research is needed.
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APPENDIX
List of abbreviations used in Table 1. 

STNN Stochastic Time Effective Neural Network
SAI Stock A Index
SBI Stock B Index
HSI Hang Seng Index
DJIA Dow Jones Industrial Average
IXIC Nasdaq Composite
JSTNN Jump Stochastic Time Effective Neural Network
SHCI Shanghai Composite Index
SZCI Shenzhen Composite Index
SZPI Shenzhen Petrochemical Index
SINOPEC China Petroleum & Chemical Corporation
SSE Shanghai Stock Exchange
SZSE Shenzhen Stock Exchange
VSS Voter Stochastic System
PCA Principle Component Analysis
PCA-STNN Principle Component Analysis - Stochastic Time Effective Neural Network
STSNN Stochastic Time Strength Neural Network
EMD Empirical Mode Decomposition
EMD-STNN Empirical Mode Decomposition - Stochastic Time Effective Neural Network
MLP Multilayer Perceptron
LSTM Long Short-Term Memory
MLP-RW Multilayer Perceptron with random walk
LSTM-RW Long Short-Term Memory with random walk
BTC Bitcoin
ETC Ethereum
LTC Litecoin
SNN Stochastic Neural Network
NYSE New York Stock Index


