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In the paper, Rickart complex and real C*-algebra are considered. For 
Rickart’s real C*-algebra, its connection with the enveloping (complex) 
C*-algebra is studied. It is shown that the fact that A is a Rickart real C*-
algebra does not imply that a complexification A +i A of A is a Rickart 
(complex) C*-algebra. Proved that if A is a real C*-algebra and A +i A is 
a Rickart C*-algebra, then, A +i A is a Rickart real C*-algebra. It is shown 
that there exists a Rickart real C*-algebra whose projection lattice is not 
complete. 
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INTRODUCTION 
The theory of operator algebras was initiated in a series of papers by Murray and von Neumann in 
the thirties. Later such algebras were called von Neumann algebras or W*-algebras. These algebras 
are self-adjoint unital subalgebras M of the algebra B(H) of bounded linear operators on a complex 
Hilbert space H, which are closed in the weak operator topology. Equivalently, M is a von Neumann 
algebra in B(H) if it is equal to its commutant (von Neumann’s bicommutant theorem). A factor 
(or W*-factor) is a von Neumann algebra with a trivial centre and investigation of general W*-
algebras can be reduced to the case of W*-factors, which are classified into types I, II and III. The 
study of C*-algebras (self-adjoint subalgebras in B(H) which are closed in the norm topology) was 
begun in the work of Gelfand and Naimark, who proved that such algebras could be characterized 
abstractly as Banach *-algebras satisfying conditions connecting the norm and the involution. They 
also proved the fundamental result (Gelfand-Naimark theorem) that a commutative initial C*-
algebra is isomorphic to the algebra of complex-valued continuous functions on a compact space (its 
spectrum). Nowadays, the theory of W*-algebras and C*-algebras is a deeply and widely developed 
theory interacting with many branches of mathematics and several areas of theoretical physics.

Rings and algebras, which will be discussed below were first studied by C.E. Rickart [1]. The 
main properties of these algebras (i.e., Rickart C*-algebras) are given in Berberyan’s monograph 
[2]. We will also consider some of them below. These algebras were further developed in the works 
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of I. Kaplansky [3-5]. Exactly, AW*-algebras was proposed by I. Kaplansky as an appropriate 
setting for certain parts of the algebraic theory of von Neumann algebras. Since AW*-algebras are 
a generalization of Rickart C*-algebras and von Neumann algebras, the theory of AW*-algebras 
began to develop faster. Rickard C*-algebras played an essential role in the emergence of AW*-
algebras.

In this article, we consider the real analogue of these algebras. Namely, in the paper, Rickart 
complex and real C*-algebra are considered. For Rickart’s real C*-algebra, its connection with 
the enveloping (complex) C*-algebra is studied. It is shown that the fact that A is a Rickart real 
C*-algebra does not imply that a complexification A +i A of A is a Rickart (complex) C*-algebra. 
Proved that if A is a real C*-algebra and A +i A is a Rickart C*-algebra, then, A is a Rickart real 
C*-algebra. It is shown that there exists a Rickart real C*-algebra whose projection lattice is not 
complete.

PRELIMINARIES

Definition 2.1. A C*-algebra is a (complex) Banach *-algebra whose norm satisfies the identity || 
x*x||=||x||2. Now, let A be a real Banach *-algebra. A is called a real C*-algebra if Ac = A+iA can be 
normed to become a (complex) C*-algebra by extending the original norm on A.

Note that a C*-norm on Ac is unique if it exists. It is known that [6, Corollary 5.2.11] A is 
real C*-algebra if and only if || x*x||=||x||2 and 1+ x*x is invertible for any x ∈ A. Let us show the 
importance of the last condition, i.e., the essentiality of element reversibility 1+ x*x. Consider the 
algebra A=    as a real Banach *-algebra with the norm ||a|| = |a| and involution a* = a∀a ∈    . It 
is easy to see that ||aa*||=||a||2, for any a ∈ A. However, for the element a= i we have 1+i∙i' = 0. 
Therefore, this algebra is not a real C*-algebra.

If for x = a+ib ∈ Ac (a, b ∈ A) we put α (x) = α (a+ib) = a*+ib* , then, it is straightforward 
to check that α: Ac → Ac is a *-anti-automorphism of period 2 on Ac, i.e., α is linear, keeps the 
involution, α(xy) = α(y)α(x) for x, y ∈ Ac and α2 = id, i.e., α(α(x)) = x for all x ∈ Ac, and moreover:

A = {x ∈ Ac: α(x) = x*} 

To motivate the next definitions, suppose A is a *-ring with unity, and let w ∈ A be a partial isometry. 
If e = w* w, it results from w = w w* w that wy = 0 iff ey = 0 iff (1-e) y = y iff y ∈ (1-e)A, thus, the 
elements that right-annihilate w form a principal right ideal generated by a projection. The idea of 
a Rickart *-ring (defined below) is that such a projection exists for every element w (not just the 
partial isometries).

Definition 2.2. If A is a ring and S is a nonempty subset of A, we write:

R(S) = {x ∈ A : sx = 0,  ∀s ∈ S}

and call R(S) the right-annihilator of S. Similarly,

L(S) = {x ∈ A : xs = 0,  ∀s ∈ S}

Denotes the left annihilator of S.

Definition 2.3. A Rickart *-ring is a *-ring A such that, for each x ∈ A, R ({x}) = gA with g a 
projection (note that such a projection is unique). It follows that L ({x}) = (R ({x*}))* = (hA)* = Ah   
for a suitable projection h. A (complex) C*-algebra that is a Rickart *-ring will be called a Rickart 
C*-algebra. A real C*-algebra that is a Rickart *-ring will be called a Rickart real C*-algebra.
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THE CONNECTION OF A RICKART REAL C*-ALGEBRA WITH ITS ENVELOPING 
RICKART (COMPLEX) C*-ALGEBRA
This section considers the connection of a Rickart real C*-algebra with its enveloping Rickart 
(complex) C*-algebra. There is an example of a Rickart real C*-algebra for which the enveloping 
C*-algebra (i.e., its complexification) is not a Rickart (complex) C*-algebra.

Example 3.1. [2, Exercise 14A]. Let B be the set of all sequences x = {λn} of complex numbers 
such as | λn | is bounded and Im (λn)→ 0 (i.e., bounded sequences which are “real at infinity”). With 
coordinate-wise operation and x* = {λn}, B is a real *-algebra. Setting ||x||= sup {| λn|}, we obtain that 
B is a real C*-algebra, since ||x*x||=||x||2 and 1+x* x is invertible, for any x ∈ B, where 1={1} is the 
identity in B. Projections in B are sequences of 0’s and 1’s. Using [7, Proposition 4.2.2], similarly to 
[2, Example 5], we can show that B is a Rickart real C*-algebra.

By applying the scheme of proof of [7, Proposition 4.2.3] we obtain:

Theorem 3.1. The complex C*-algebra B+iB is not a Rickart C*-algebra.

Now, let us consider the converse problem: If A is a real C*-algebra and A+iA is a Rickart C*-
algebra is A necessarily a Rickart real C*-algebra?

The following result gives a positive answer to this problem, which is the main result of this section.

Theorem 3.2. Let A be a real C*-algebra and let Ac = A+ iA  be its complexification. Suppose that 
Ac is a Rickart C*-algebra. Then, A is a Rickart real C*-algebra.

Proof. If a ∈ A, then, for set {a} right-annihilator (with respect to Ac), we have:

Rc ({a}) = {x ∈ Ac : ax = 0} 

and 

x ∈ Rc ({a}) ⇔ ax = 0 ⇔ 0 = α(ax)* = α(a)* α(x)* = a(αx)*,  

because  α(a)* = a ∈ A. This means that x ∈ Rc ({a}) if and only if α(x)*∈ Rc ({a}).

Now, suppose that Ac is a Rickart C*-algebra, then, Rc ({a}) = gAc for a suitable projection g∈Ac. 
Since g ∈ Rc ({a}) from above it follows that α(g*) = α(g) ∈ Rc ({a}). Hence, for h = α(g), we have:

h2 = α(g)α(g) = α(g2)= α(g) = h, h* = α(g)* = α(g*) = α(g)= h  

Therefore, h= α(g) is a projection and α(g) ∈ gAc, i.e., α(g) = gα(g) (h= gh). Thus:

g  = α(α (g)) = α(h) = α (gh) = α(h)α(g) = gα(g) = α(g).    

This means that g ∈ A. But then:

R ({a}) = Rc ({a}) ∩ A = gAc ∩ A =gA,  

i.e., A is a Rickart real C*-algebra. This completes the proof of the theorem. 
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MAIN RESULTS
In this section, we will show that there is a Rickart real C*-algebra whose projection lattice is not 
complete. We will consider the connection between Rickart’s real C*-algebra and real AW*-algebra.

Proposition 4.1. [2, Proposition 3, paragraph 3]. Let A be a Rickart *-ring and x ∈ A. There exists a 
A unique projection exists such as (1) xe = x, and (2) xy = 0 iff ey = 0. Similarly, there exists a unique 
projection exists such as (3) fx = x, and (4) yx = 0 iff yf = 0. Explicitly  R({x}) = (1-e)A and L({x}) = 
A(1-f). The projections e and f are minimal in the properties (1) and (3), respectively. We write e = 
RP(x), f= LP(x), called the right projection and the left projection of x.

It is known that any C*-algebra can be isomorphically embedded into some B(H). Namely, there 
is an isomorphism of a C*-algebra onto a uniformly closed C*-subalgebra B(H), for some complex 
Hilbert space H. On the other hand, if A ⊂ B(H) be a real C*-algebra, then, it is also known that (see 
Proposition 5.1.2 [6]), there is a real Hilbert space H with:

Hr + iHr =H,    A ⊂ B(Hr) ⊂ B(Hr) + iB(Hr) = B(H).           

Proposition 4.2. The real C*-algebra B(Hr) is a Rickart real C*-algebra. Explicitly, if  x ∈ B(Hr)
then LP(x) is the projection on the closure of the range of x, and 1-RP(x) is the projection on the null 
space of x (i.e., 1-RP(x) ∈ x* (Hr)

┴).

Proof. Let x ∈ B(Hr). Let f: Hr → x(Hr)  be a projection. It is obvious that if sx = 0, then, s = 0 on      

x(Hr) ⇔ s = 0 on x(Hr). Then, sf = 0, and hence, we have s(1-f) = s and s ∈ B(Hr)(1-f). Thus, we obtain 

L({x}) = B(Hr)(1-f). This shows that B(Hr) is a Rickart *-ring. It follows that RP(x) = LP(x*) is the 

projection on x*(Hr), therefore, 1-RP(x) is the projection on x*(Hr)
┴ = x*(Hr)

┴, which is the null space 
of x. This completes the proof of the proposition. ■

If A is a Rickart *-ring and B is a *-subring of A, then, B need not be a Rickart *-ring: An obvious 
example is when B has no unity element (a Rickart *-ring always has a unity element), but adjoining 
a unity element may not be a remedy (we will show it below). There is, nevertheless, a useful positive 
result.

Proposition 4.3. [2, Proposition 8, paragraph 3]. Let A be a Rickart *-ring and let B be a *-subring 
such that (1) B has a unity element, and (2) x ∈ B implies RP(x) ∈ B. Then, B is also a Rickart *-ring.

Theorem 4.1. There exists a Rickart real C*-algebra whose projection lattice is not complete.

Proof. Let Hr be an inseparable real Hilbert space, and let A ⊂ B(Hr) be the subset of all operators with 
separable range, i.e.,  a(Hr), a separable, for a ∈ A. Let A1 be its unification:

A1 = {a +λ1: a ∈ A, λ ∈       

Where 1 is the identity operator on Hr. It is directly proved that A1 is a real C*-algebra. We show 
it is a Rickart *-ring with an incomplete projection lattice.
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To prove that A1 is a Rickart *-ring, by Proposition 4.3, it will suffice to show that x ∈ A1   
implies RP(x)∈A1. Let x = a + λ1 ∈ A1 (where a ∈ A, λ ∈    ). If λ = 0, then, RP(x) = RP(a) = LP(a*) 
∈ A because the closure of a separable linear subspace is separable. Let λ ≠ 0. By Proposition 4.2, 
the algebra B(Hr) is a Rickart *-ring and g =1-RP(x) is the projection on the null space of x. Then, xg 
= 0, i.e., (a + λ1)g = 0. Hence, g = a(-λ-1)g ∈ A because A is an ideal in B(Hr), therefore, we obtain 
RP(x) = 1 - g ∈ A1. By Proposition 4.3, the algebra A1 is a Rickart *-ring.

Finally, the projection lattice of A1  is incomplete. For example, if e ∈ B(Hr) is any projection 
such that both ̒e and 1-e have an inseparable range, then, the separable sub projections of e can have 
no supremum in A1. This completes the proof of the theorem.■ 

Definition 4.1. A Bear *-ring is a *-ring A such that for every nonempty subset S ⊂ A, R(S) = gA  
for a suitable projection g. It follows that L(S) = R(S*)* = (hA)* = Ah for a suitable projection h.

The relation between Rickart *-rings and Baer *-rings is the relation between lattices and 
complete lattices:

Proposition 4.4. [2, Proposition 1, paragraph 4]. The following conditions on a *-ring A are 
equivalent:
(a) A is a Baer *-ring;
(b) A is a Rickart *-ring whose projections form a complete lattice;
(c) A is a Rickart *-ring in which every orthogonal family of projections has a supremum.

Definition 4.2. A (complex) C*-algebra that is a Bear *-ring will be called an AW*-algebra. A real 
C*-algebra that is a Bear *-ring will be called a real AW*-algebra.

It is known that B(H) and B(Hr) are complex and real AW*-algebras, respectively (see [2, 
Proposition 1, paragraph 4] and [7, Corollary 4.6.12]). In particular, any complex and real W*-
algebra is complex and real AW*-algebra, respectively. Recall that [8] W*-algebra is a weakly 
closed complex *-algebra of operators on a Hilbert space H containing the identity operator 1 (W*-
algebras are also called von Neumann algebras).

By Theorem 4.1 and Proposition 4.4, we obtain:

Corollary 4.1. A real AW*-algebra is a Rickart real C*-algebra, but the converse is not true, i.e., a 
Rickart real C*-algebra does not need to be a real AW*-algebra.

Corollary 4.2. The algebra B from the example above is a Rickart real C*-algebra but by Theorem 
3.1, it is not a real W*-algebra.
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